Doc Talk with Cardiologist Dr. Pete Lemis

Dr. Peter Lemis is a cardiologist in Summit County, CO. He sat down with us in December to share his experience treating heart patients in the mountains.

Summit County cardiologist Dr. Pete Lemis

I graduated medical school in ‘77, practiced internal medicine in New Rochelle, New York, the first county just north of the Bronx. Then I went to New Hampshire for three years. I was reading the New England Journal and saw an unexpected cardiology opening at Henry Ford Hospital in Detroit. Next I was in Pittsburg for 26 years practicing cardiology. Decided I wanted to retire to Colorado, so I built a vacation home here only to discover I didn’t have to wait to retire to move here, so I came five years ago. 

What is it about high altitude and the heart that makes it healthy for heart patients?

Summit is the fifth highest county in the US with the highest population of those counties. The 21 highest are all in Colorado. Lower air pressure means that although there is 21% oxygen in the atmosphere, there are fewer oxygen molecules. So every breath we take is giving us less oxygen, unless we breathe faster and deeper to make up for it, a natural tendency for people. They don’t even think about it. Some people have hypoxia without shortness of breath. Every once in a while, I’ll see a patient who moved to altitude for work or something, and they’re hypoxic. It is probably genetic that some people have a decreased central respiratory drive. 

These patients with low oxygen often are ordered to have an echocardiogram. When they first come up here, they usually won’t have pulmonary hypertension. For some, the decreased central respiratory drive develops not when they first move here, but years after they move here. They become more and more hypoxic without having the feeling of shortness of breath. They have the same physiological response that people with hypoxia get. Their pulmonary vessels are still being constricted, which is reversible if diagnosed and treated with oxygen supplementation during the first few years of high altitude living. If not treated they are likely to get scarring of their pulmonary vessels. The length of time for this to develop is different for different people, and is unpredictable.

For example, I had somebody just this week who’s been here about 2 years who has a resting oxygen saturation of about 82% at 60 years old. 

We can’t tell who is susceptible to this problem. There are likely some genetic factors involved. Dr. Johnson, who recruited me for my job in Summit County, has been here since 2008. He warned me about the issue of high altitude and hypoxia. Most doctors who are unfamiliar with life at high altitude think you adapt and that’s it. Dr. Johnson said to me, “wait three months and test yourself and your wife with an overnight oximetry to see if there’s hypoxia.” Based on that test I started using nocturnal oxygen and I sleep better when I use it. My wife doesn’t need it. Neither does her mother, who is 90 years old. Neither do my sons.

Awake, we’re able to maintain our oxygen levels, but at night when asleep most people who are here in Summit County have low oxygen. Hence my advice is to get a nocturnal pulse oximetry test. Low oxygen for several hours every night over the years can lead to pulmonary hypertension due to the narrowing of the pulmonary arteries. Then there is the question of what is normal: most high altitude studies were done in La Paz with indigenous, adapted populations as opposed to people living in the mountains of Colorado who have been here years or decades. (See what Dr. Chris has written on her collaboration with physicians and scientists in La Paz, Bolivia.)

We asked Dr. Lemis about arrhythmias at altitude. There are two categories-atrial (from the top chamber) and ventricular (from the bottom chamber).

Studies have shown that cardiac arrhythmias are increased initially, but people become acclimated after about 3 – 5 days and the risk returns to baseline. I don’t think these studies have been conducted over enough time. Hypoxia leads to an increase in arrhythmias. I see a lot of atrial fibrillation  and atrial flutter up here; plus, I send three to four patients a month for an electrical procedure to ablate some of the cardiac conduction pathways to get rid of their arrhythmias. Many patients experience relief from atrial arrhythmias when put on nocturnal oxygen.

JB is a 70 year old who has lived at high altitude for 14 years. He experienced atrial fibrillation several times after returning to Summit County from a trip to sea level. He wore a heart monitor for over a month to see how his heart was beating. He felt the atrial fibrillation was related to dehydration and has prevented further episodes, never needing a pacemaker or other treatment. Jim uses a device that monitors his oxygen and heart rate continually while he sleeps, downloading a written report in the morning.

Why do so many people who live up here have bradycardia?

I think because many are athletes. Athletes often have an efficient heart; I see just as many people who have tachycardia because they have low oxygen. Low oxygen causes higher levels of epinephrine. This stimulates their adrenal gland, which can increase their blood pressure. Many people have high blood pressure at high altitude because they have low oxygen. One of my criteria for testing someone for low oxygen at night is if they have high blood pressure.

Many people have central apnea during sleep at altitude caused by the brain’s blunted response to high CO2 and low O2. Similar to obstructive sleep apnea, this central sleep apnea can increase the risk of heart problems. Many people with obstructive sleep apnea here at high altitude need to have oxygen put into their CPAP machine so they get oxygen, rather than just air with continuous positive airway pressure.

There is less fatal ischemic heart disease up here. People tend to be healthier, more athletic. They’ve moved here for an active lifestyle. There’s less cigarette smoking, more exercise, generally better diet (not always), but people up here still have heart attacks. My impression is more of them survive their heart attacks because of their increased physical activity and healthy lifestyle. They have better collateral flow with more capillaries in the heart. They’re protected to some degree. The corollary to this is the fact that when visitors come here and have heart disease, I don’t think that their cardiologist back at low altitude understands high altitude risks and therefore are unable to provide appropriate medical advice. The same amount of exertion here is much harder on the heart, much more stressful to the heart, than it would be at low altitude. There’s something called a double product when you do an exercise test, related to blood pressure and heart rates. You get the same double product causing the same stress on the heart here as at low altitude, but it takes much less exertion to get to a specific double product. 

People who are accustomed to a certain work load at home come up here and try to do the same amount of exertion. If they have coronary artery disease, suddenly there is a middle aged guy with coronary disease having a cardiac ischemic event, perhaps even sudden cardiac death. 

Another important point is that people with known heart disease who live at low altitude, if they’re unstable at all, they shouldn’t be up here within three to six weeks of a heart attack. They should be able to pass a stress test at low altitude before coming to high altitude to visit.

Valvular heart disease patients who have not been treated with surgery, who don’t already live up here, shouldn’t come up here from lower altitude. People with heart failure can come up here if the failure is compensated.

For people who have trouble acclimating to high altitude in the short term, Diamox is quite useful. Using oxygen at night helps you acclimate as well. Diamox makes your blood a little acidotic which increases your respiratory drive.

Avoid alcohol when you first come to high altitude. Unfortunately people on vacation don’t do that. Alcohol is a respiratory suppressant. At high altitude the hypoxia and cold promotes diuresis, so people tend to get dehydrated. Anti-inflammatory drugs are useful in treating the acute altitude sickness for some people. During the first two or three days, try not to push your physical activity to the limits. Try to get a good amount of sleep.

I would say that I have way fewer heart failure patients [up here]. Because patients who develop advanced heart failure really do not do well here, so they tend to move away to lower altitude before that happens. I have younger patients as compared with my former Pittsburgh practice. I also have way fewer patients with COPD. Anything that causes chronic respiratory difficulties you will find a lot less of that up here. Plus, I’m working in an environment where there are less consultants. 

Back in Pittsburg, two thirds of my practice was taking care of patients in the hospital, so I would deal with patients who would come in with a heart attack, with a heart failure exacerbation, or other acute cardiac problem. Here in Summit County, those severely ill patients get transferred down to Denver, so I provide more in-office preventive or post-illness follow-up than I do care in the hospital. My patients who need advanced procedures (e.g. heart catheters, ablation for arrhythmias), I generally send them down to our sister hospital (St. Anthony in Lakewood). 

The cardiac surgeon who will do the bypass surgery usually knows that the patient returning to the mountains will have to be on oxygen for two weeks after surgery.


Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.