Category Archives: Asthma

Can I Ever Go Back Up To High Altitude Again? – Recurrence Risk of HAPE & HARPE

by Taylor Kligerman, PA-S

Can I ever return to high altitude? Do I need to move down to a lower elevation?

Disease processes often differ at high altitudes. Some conditions have only been known to occur at high elevations. Most of the resources cited in this blog refer to ‘high altitude’ being at or above 2,500 meters or 8,200 feet.

Ebert Family Clinic in Frisco, Colorado is at 9,075 ft. Many areas in the immediate vicinity are over 10,000′, with some patients living above 11,000′. Two of the more common conditions seen in patients at Ebert Family Clinic are high altitude pulmonary edema (HAPE) and high altitude resident pulmonary edema (HARPE), similar conditions that affect slightly different populations in this region of the Colorado Rocky Mountains.

In “classic” HAPE, a visitor may come from a low-altitude area to Frisco on a trip to ski with friends. On the first or second day, the person notices a nagging cough. They might wonder if they caught a virus on the plane ride to Denver. The cough is usually followed by shortness of breath that begins to make daily tasks overwhelmingly difficult. One of the dangerous aspects of HAPE is a gradual onset leading patients to believe their symptoms are caused by something else. A similar phenomenon is seen in re-entry HAPE, where a resident of a high altitude location travels to low altitude for a trip and upon return experiences these same symptoms [1].

In HARPE, a person living and working here in Frisco may be getting ill or slowly recovering from a viral illness and notices a worsening cough and fatigue. These cases are even more insidious, going unrecognized, and so treatment is sought very late. Dr. Christine Ebert-Santos and her team at Ebert Family Clinic hypothesize that while residents have adequately acclimated to the high-altitude environment, the additional lowering of blood oxygen due to a respiratory illness with inflammation may be the inciting event in these cases.

In both cases, symptoms are difficult to confidently identify as a serious illness versus an upper respiratory infection, or simply difficulty adjusting to altitude. For this reason, Dr. Chris recommends that everyone staying overnight at high altitude obtain a pulse oximeter. Many people became familiar with the use of these instruments during the COVID-19 pandemic. The pulse oximeter measures what percent of your blood is carrying oxygen. At high altitude, a healthy level of oxygenation is typically ≥90%. This is an easy way to both identify potential HAPE/HARPE, as well as reassure patients they are safely coping with the high-altitude environment [2].

HAPE and HARPE are both a direct result of hypobaric hypoxia, a lack of oxygen availability at altitude due to decreased atmospheric pressures. At certain levels of hypoxia, we observe a breakdown in the walls between blood vessels and the structures in lungs responsible for oxygenating blood. The process is still not totally understood, but some causes of this breakdown include an inadequate increase in breathing rates, reduced blood delivered to the lungs, reduced fluid being cleared from the lungs, and excessive constriction of blood vessels throughout the body. These processes cause fluid accumulation throughout the lungs in the areas responsible for gas exchange making it harder to oxygenate the blood [3].

We do know that genetics play a significant role in a person’s risk of developing HAPE/HARPE. Studies have proposed many different genes that may contribute, but research has not, so far, given healthcare providers a clear picture of which patients are most at-risk. Studies have shown that those at higher risk of pulmonary hypertension (high blood pressure in the blood vessels of your lungs), are more likely to develop HAPE [4]. This includes some types of congenital heart defects [5,6]. High blood pressures in the lungs reach a tipping point and appear to be the first event in this process. However, while elevated blood pressures in the lungs are essential for HAPE/HARPE, this by itself, does not cause the condition. The other ingredient necessary for HAPE/HARPE to develop is uneven tightening of the blood vessels in the lungs. When blood vessels are constricted locally, the blood flow is shifted mainly to the more open vessels, and this is where we primarily see fluid leakage. As the blood-oxygen barrier is broken down in these areas, we may also see hemorrhage in the air sacs of the lungs [3].

One observation healthcare providers and scientists have observed is that HAPE/HARPE can be rapidly reversed by either descending from altitude or using supplemental oxygen. Both strategies increase the availability of oxygen in the lungs, reducing the pressure on the lungs’ blood vessels by vasodilation, quickly improving the integrity of the blood-oxygen barrier.

In a preliminary review of over 100 cases of emergency room patients in Frisco diagnosed with hypoxemia (low blood oxygen content) Dr. Chris and her team have begun to see trends that suggest the availability of at-home oxygen markedly reduces the risk of a trip to the hospital. This demonstrates that patients with both at-home pulse oximeters and supplemental oxygen have the capability to notice possible symptoms of HAPE, assess their blood oxygen content, and apply supplemental oxygen if needed. This stops the development of HAPE/HARPE before damage is done in the lungs. In the case of many of our patients, these at-home supplies prevent emergencies and allow patients time to schedule an appointment with their primary care provider to better evaluate symptoms.

Additionally, Dr. Chris and her team have observed that patients with histories of asthma, cancer, pneumonia, and previous HAPE/HARPE are often better educated and alert to these early signs of hypoxia and begin treatment earlier on in the course of HAPE/HARPE, reducing the relative incidence identified by medical facilities. There are many reasons to seek emergent care such as low oxygen with a fever. Patients with other existing diseases causing chronically low oxygen such as chronic lung disease may not be appropriately treated with  supplemental oxygen, although this is a very small portion of the population. Discussions with healthcare providers on the appropriate prevention plan for each patient will help educate and prevent emergency care visits in both residents and visitors.

A young child with short brown hair and glasses with dark, round frames wears a nasal canula for oxygen.

Studies of larger populations have yet to be published. A review of the case reports in smaller populations suggests that the previously estimated recurrence rate of 60-80% is exaggerated. This is a significant finding as healthcare providers have relied on this recurrence rate to make recommendations to their patients who have been diagnosed with HAPE. A review of 21 cases of children in Colorado diagnosed with HAPE reported that 42% experienced at least one recurrence [7]. This study was conducted by voluntary completion of a survey by the patients (or their families) which could lead to significant participation bias affecting the results. Patients more impacted by HAPE are more likely to complete these surveys. Another study looking at three cases of gradual re-ascent following an uncomplicated HAPE diagnosis showed no evidence of recurrence. The paper also suggested there may be some remodeling of the lung anatomy after an episode of HAPE that helps protect a patient from reoccurrence [8]. Similar suggestions of remodeling have been proposed through evidence of altitude being a protective factor in preventing death as demonstrated by fatality reports from COVID-19[9].

Without larger studies and selection of participants to eliminate other variables like preexisting diseases, we are left to speculate on the true rate of reoccurrence based on the limited information we have. Strategies to reduce the risk of HAPE/HARPE such as access to supplemental oxygen, pulse oximeters, and prescription medications [10] are the best way to prevent HAPE/HARPE. Research should also continue to seek evidence of individuals most at risk for developing HAPE/HARPE [11].

A woman with reddish-brown, straight hair just below her shoulders, wears a white coat over a mustard-colored shirt, smiling.
  1. Ucrós S, Aparicio C, Castro-Rodriguez JA, Ivy D. High altitude pulmonary edema in children: A systematic review. Pediatr Pulmonol. 2023;58(4):1059-1067. doi:10.1002/ppul.26294
  2. Deweber K, Scorza K. Return to activity at altitude after high-altitude illness. Sports Health. 2010;2(4):291-300. doi:10.1177/1941738110373065
  3. Bärtsch P. High altitude pulmonary edema. Med Sci Sports Exerc. 1999;31(1 Suppl):S23-S27. doi:10.1097/00005768-199901001-00004
  4. Eichstaedt C, Benjamin N, Grünig E. Genetics of pulmonary hypertension and high-altitude pulmonary edema. J Appl Physiol. 2020;128:1432
  5. Das BB, Wolfe RR, Chan K, Larsen GL, Reeves JT, Ivy D. High-Altitude Pulmonary Edema in Children with Underlying Cardiopulmonary Disorders and Pulmonary Hypertension Living at Altitude. Arch Pediatr Adolesc Med. 2004;158(12):1170–1176. doi:10.1001/archpedi.158.12.1170
  6. Liptzin DR, Abman SH, Giesenhagen A, Ivy DD. An Approach to Children with Pulmonary Edema at High Altitude. High Alt Med Biol. 2018;19(1):91-98. doi:10.1089/ham.2017.0096
  7. Kelly TD, Meier M, Weinman JP, Ivy D, Brinton JT, Liptzin DR. High-Altitude Pulmonary Edema in Colorado Children: A Cross-Sectional Survey and Retrospective Review. High Alt Med Biol. 2022;23(2):119-124. doi:10.1089/ham.2021.0121
  8. Litch JA, Bishop RA. Reascent following resolution of high altitude pulmonary edema (HAPE). High Alt Med Biol. 2001;2(1):53-55. doi:10.1089/152702901750067927
  9. Gerken J, Zapata D, Kuivinen D, Zapata I. Comorbidities, sociodemographic factors, and determinants of health on COVID-19 fatalities in the United States. Front Public Health. 2022;10:993662. Published 2022 Nov 3. doi:10.3389/fpubh.2022.993662
  10. Luks A, Swenson E, Bärtsch P. Acute high-altitude sickness. European Respiratory Review. 2017;26: 160096; DOI: 10.1183/16000617.0096-2016
  11. Dehnert C, Grünig E, Mereles D, von Lennep N, Bärtsch P. Identification of individuals susceptible to high-altitude pulmonary oedema at low altitude. European Respiratory Journal 2005;25(3):545-551; DOI: 10.1183/09031936.05.00070404

Hypoxia in the Emergency Department: Preliminary Analysis of Data from the Highest Atitude Population in North America & Children with Hypoxia

Hypoxia is a common presentation at the emergency department for the St Anthony Summit Medical Center, located at 2800 meters above sea level (msl) in Colorado. Children under 18 are brought in with respiratory symptoms, trauma, congenital heart and lung abnormalities, and high altitude pulmonary edema (HAPE). Many complain of shortness of breath and/or cough and are found to be hypoxic, defined as an oxygen saturation below 89% on room air for this elevation. Patients who live at altitude may perform home pulse oximetry and arrive for treatment and diagnosis of known hypoxia. Extensive and ongoing analysis of the data from children found to be hypoxic in the emergency department raises many questions, including how residents vs nonresidents present, how often  these cases are preceded by febrile illness and what chief complaint is most frequently cited. 

Understanding the presentation of hypoxia in children at altitude can help ensure that healthcare providers are following a comprehensive approach with awareness of the overlapping symptoms of HAPE, pneumonia and asthma. Below is a graphic summary of 36 cases illustrating the clinical, social and geographic factors contributing to hypoxia at altitude in residents and visitors. A further analysis of over 200 children with hypoxia presenting to the emergency room at 9000 feet is underway including x-ray findings.

The graphs below were created by the author, using data extracted directly from a review of patient charts (specifically, those of children presenting to the local hospital in Summit County, Colorado (9000 feet) with hypoxia).

Graphs 1-4 show chief complaints of cough (CC) and shortness of breath (SOB) compared by age and by residence (residence includes altitudes above 2100 msl, the front range (a high altitude region of the Rocky Mountains running north-south between Casper, Wyoming and Pueblo, Colorado) averaging 1500 msl, and out of the state of Colorado) 

A graph of age with blue bars

Description automatically generated
A graph with blue bars

Description automatically generated
A graph with blue bars

Description automatically generated
A graph of a bar chart

Description automatically generated with medium confidence

Graphs 5-6 show presence of fever by residence and by age 

A graph with blue bars

Description automatically generated
A graph of a number of people with fever

Description automatically generated

Graphs 7-8 show presence of asthma by residence and by age 

A graph with blue bars

Description automatically generated
A graph with blue bars

Description automatically generated

Graphs 9 and 10 show lowest oxygen by age at admission and lowest O2 organized by days spent in the county (residents are excluded from this data). 

A graph with blue dots

Description automatically generated
A graph with blue dots

Description automatically generated

Doc Talk: Physician Altitude Experts on High Altitude Pulmonary Edema (HAPE)

One of our students recently came across a comprehensive publication on high altitude pulmonary edema (HAPE) on reputable point-of-care clinical resource UpToDate.com1, citing Christine Ebert-Santos, MD, MPS, the founder of highaltitudehealth.com.

Emergency medicine physician at Aspen Valley Hospital and medical director for Mountain Rescue Aspen since 1997 Dr. Scott A. Gallagher2 and emergency physician and altitude research pioneer Dr. Peter Hackett3 introduce the resource warning, “Anyone who travels to high altitude, whether a recreational hiker, skier, mountain climber, soldier, or worker, is at risk of developing high-altitude illness.”

Ebert-Santos’s (known affectionately to her patients and mountain community as “Dr. Chris”) own research is referenced in the article’s discussion of epidemiology and risk factors noting an additional category of HAPE among “children living at altitude who develop pulmonary edema with respiratory infection but without change in altitude,”4 whereas the two other recognized categories (classic HAPE and re-entry HAPE) typically happen in response to a change in altitude.

The article continues with figures illustrating how ascending too quickly or too much can dramatically increase risk: “HAPE generally occurs above 2500 meters (8000 feet) and is uncommon below 3000 meters (10,000 feet) … The risk depends upon individual susceptibility, altitude attained, rate of ascent, and time spent at high altitude. in those without a history of HAPE, the incidence is 0.2 percent with ascent to 4500 meters (14,800 feet) over four days but 6 percept when ascent occurs over one to two days. In those with a history of HAPE, recurrence is 60 percent with an ascent to 4500 meters over two days. At 5500 meters (18,000 feet), the incidence ranges between 2 and 15 percent, again depending upon rate of ascent.”

Dr. Chris discusses her experience treating her pediatric patients at high altitude in more depth in an interview with pediatric emergency medicine physician Dr. Alison Brent from Colorado Children’s Hospital for the podcast Charting Pediatrics.

Dr. Gallagher and Dr. Hackett’s article is available on UpToDate with a subscription.

  1. https://www.uptodate.com/contents/high-altitude-pulmonary-edema?source=autocomplete&index=0~1&search=HAPE ↩︎
  2. https://www.aspenhospital.org/people/scott-a-gallagher-md/ ↩︎
  3. https://www.highaltitudedoctor.org/dr-peter-hackett ↩︎
  4. Ebert-Santos, C. High-Altitude Pulmonary Edema in Mountain Community Residents. High Alt Med Biol 2017; 18:278. ↩︎

Living With High Altitude Pulmonary Hypertension: An Interview with Karen Terrell

by Jennifer Wolfe, NP-S

During my last week of a clinical rotation at Ebert Family Clinic in Frisco, Colorado, at 9000 feet, I was thrilled to have the opportunity to interview high altitude resident Karen Terrell with physician Dr. Chris Ebert-Santos.  During this time, we were able to discuss high altitude pulmonary hypertension, also known as NAPH. This is a condition that Karen has been living with since 2015.  NAPH is condition that can affect people that live above 8,200 feet, more than 140 million people live at this altitude worldwide, including the population of Summit County, where the town of Frisco, Colorado is. Pulmonary hypertension is a group of disorders that will typically be diagnosed during a heart catheterization measuring the mean arterial pressure of the right side of the heart.  These disorders are broken down into five groups. High altitude pulmonary hypertension is in group three. The primary symptoms that people first notice is extreme fatigue, difficulty getting air upon exertion, and difficulty engaging in their normal exercise routines.

How long have you lived in Summit County [Colorado], and where did you move from originally?

Karen: I grew up in Nebraska, I moved to New York City as soon as I was old enough to leave home.  I went to Boulder for school, and then moved to Denver for work.  I went to an Outward-Bound Experience, and I fell in love with this area.  I have lived in Summit County over 37 years. My kids were born and raised here; they are now in their 30s.

What are some of the things that you love to do in area?

Karen: I downhill ski, I uphill ski, and I cross country ski.  Mountain biking is my passion. I downhill bike, that is where you take the gondola to the top of the mountain and then ride your bike down.

When did you start to have symptoms?

Karen: 2015

What were the symptoms that you noticed first?

Karen: Extreme fatigue and erratic pulse, with or without exertion.  By the end of a run, I would be so exhausted that I was practically crawling home.

Do have to go on oxygen at any point?

Karen: In 2018 I started using oxygen at night. I still use oxygen at night.  In 2020 I started riding and skiing with portable oxygen. When my oxygen columns fail, so do I. It was also during this time I began to work on nasal breathing night and day.  I have been doing research on the importance of nasal breathing and retraining the body on how to take in oxygen.  Practicing nasal breathing is especially important when you are using a nasal cannula to get oxygen when you are being active.

An image of the OxyGo FIT portable oxygen concentrator with specifications.
https://oxygo.life/oxygo-fit

Dr. Chris Ebert-Santos:  The standard is “if you’re 50 and you’ve lived here 10 years and you want to live here for another 10 years you should be sleeping on oxygen.”

Between 2015 and 2018 did you have any other symptoms or worsening concerns?

Karen: In 2017 I applied for life insurance.  I was denied as I had what I now know is chronic proteinuria. The nephrologist was perplexed as to why someone who is as active as I am and takes no medication is having this condition.  The insurance company essentially told me that they would not touch me with a 10-foot pole.  This was the “canary in the mine” that made me think something was not right. In 2018, I had a cardiac ablation. The cardiac ablation corrected the erratic heart rate and relieved my extreme fatigue. However, it did nothing for my oxygen saturation.

You mentioned in 2020 that you started to ski and ride your bike with portable oxygen.  Did something happen in 2020, besides COVID?

Karen: You know, with everything that I have going on health wise I have been so cautious that I have not ever had COVID. In 2020, I was at an office visit with my PA. I mentioned that biking and skiing at higher elevation with exertion, that I felt flattened and near-dead.  My pulse oximeter showed oxygen saturation of low 70’s. My PA freaked out and thought I had Pulmonary Hypertension (as opposed to HAPH) and sent me to a Denver Pulmonary specialist.

What did the pulmonary specialist tell you?

Karen: When I went to the pulmonary specialist, they said my oxygen numbers were fine at Denver’s elevation. The Pulmonologist advised moving to lower elevation but said there is no knowing how low until I experiment.  I have lived in Summit County and raised my children here; my children still live here.  Moving was not an option. I started riding and skiing with portable oxygen. When 02 columns fail, so do I. I do have periodic episodes of extreme joint pain resulting from excessive stress/time at desk (10-hr days).  However, I try to eliminate the pain by remaining active using oxygen when I need it. If I don’t use oxygen to sleep, I feel half dead the next day and it is difficult to wake up the next day.  I worry about the long-term effects of the hypoxia, however I continue to monitor.  I am hoping to see more research done in the area of high-altitude pulmonary hypertension. 

Jennifer Wolfe is in her final semester of Nurse Practitioner school at Georgetown University. She was born and raised in Missouri and attended The University of Missouri where she graduated with a bachelor’s degree in psychology. After attending Mizzou she married her husband who was active duty in the US Navy. They traveled to many bases and had two boys before calling Denver their home in 2011.  Jennifer received her BSN from Denver College of Nursing. Jennifer has spent 7 years as a nurse in the emergency department of several level II trauma centers before starting at Georgetown as a part of the Family Nurse Practitioner program.  Jennifer enjoys spending her free time with her family and their three dogs.  

Aconcagua: an Athlete/Medical Scientist’s Narrative in Symptoms

“Day 10: I walked for maybe an hour up to Camp 3 (19,258’/5870 m) from Camp 2 (18,200’/5547 m). I became the slowest person. I had tunnel vision. It was bad. It took a lot of willpower. I do a good job of not telling people how bad I really feel. After about a mile, I told them I had to stop, and me and Logan turned around. We had that conversation,

‘I don’t think I should go up anymore. It’s not safe for me, and it’s not safe for the group.’

Barely able to move, about an hour above Camp 2.

“The others didn’t go all the way to Camp 3, but continue on a bit more. Angela said she got a headache really bad and couldn’t see out of her right eye. I had already pretty much decided — I was devastated — after two nights and two days of not acclimating. Alejo had a stethoscope and said my left lung was crackling. We thought I might develop some really serious pulmonary edema.”

Keshari Thakali, PhD is an Assistant Professor in the Department of Pediatrics at the University of Arkansas for Medical Sciences in Little Rock, AR. She is a cardiovascular pharmacologist by training and her research laboratory studies how maternal obesity during pregnancy programs cardiovascular disease in offspring. When not at work, you can find her mountain biking, rock climbing, hiking or paddling somewhere in The Natural State. She has a long-term career goal of merging her interests in mountaineering with studying cardiovascular adaptations at high altitude. She has climbed to some of the most extreme elevations in the Rocky Mountains, Andes and Himalayas. Last December, she flew down to Mendoza in Argentina for an ascent up Aconcagua.

Sacred in ancient and contemporary Incan culture, and the highest peak in the Americas, Aconcagua summits at 22,837′ (6960 m). Current statistics show only 30 – 40% of attempted climbs reach the top of this massive mountain in the Andes, in Principal Cordillera in the Mendoza Province of Argentina.

Sunset on Aconcagua from Base Camp.

The day following Keshari’s decision not to summit, she hiked back down to Plaza de Mulas (14,337’/4370 m) from Camp 2, carrying some of her colleague’s gear that he didn’t want to take up to the summit as he continued to ascend. Plaza de Mulas is a large base camp area with plenty of room for tents, available water, and large rocks that provide some protection from the wind as climbers take time to acclimate before continuing their ascent.

“Even though my oxygen [saturation] was low, I was functional. As you go down, everything gets better. The others continued up to Camp 3. They spent one night there, then summited the next day. It took them 12 hours.

“The day the others came back to Plaza de Mulas, I think that’s when everything hit me. I felt like a zombie. I did some bouldering and got so tired I had to sit down and catch my breath often, probably because I had been hypoxic and we were at over 14,000′.

“[The next day] we did the really long hike from Plaza de Mulas all the way to the entrance of the park. It probably took about 8 hours to walk all the way to the park entrance.

“We drove to Mendoza that night. I felt like my body was tired, but my muscles were functioning just fine. It’s hard to describe.”

They had done everything right and had taken every precaution. Each of Keshari’s colleagues boasted significant backgrounds in climbing and mountaineering, their cumulative accomplishments including Mt. Elbrus (18,510’/5642 m), Cotopaxi (19,347’/5897 m) and Denali (20,335’/6198 m), their ages 30 to 65. They weren’t initially planning to hire porters, “but they ended up carrying a lot of our stuff. In the end, it just makes sense to hire these porters to increase your chance of success.”

They gave themselves about two weeks to make the ascent and return. There was ample time for them to stop at each camp and spend time acclimatizing, including day hikes to the nearby peaks of Bonete and Mirador.

“Day 4 [we did an] acclimatization hike to Bonete (16,647’/5074 m), pretty much the same elevation of Camp 1. You look at the mountain and it looks pretty close, but … in mountaineering, you don’t do distances, you do time. Did the hike in mountaineering boots, which were heavy and clunky, but I learned how my boots actually work. You walk differently in these than a shoe with a flexible sole. The last part of the mountain is pretty rocky and it looks like you’re almost to the top, but you still have to walk an hour to the summit. It took about five hours to go up. We were walking slow, I felt fine. From the top of that mountain, looking away from Aconcagua, you can really see Chile and the Chilean Andes.”

Summit of Bonete.

All the way through their first week of climbing, including a day of resting and eating after their hike up Bonete, Keshari was feeling fine.

“Day 8, we made the push to Camp 2 (18,200’/5547 m). None of these hikes made me tired. I was plenty trained. We were carrying packs, but they were still pretty light, packed with stuff for the day. We spent the night at Camp 2, took oxygen mostly at night. [My] first reading at Camp 2 was low. We were at over 18,000′. I thought maybe I’ll just go to sleep and it’ll get better.

Looking down on Camp 2 covered in snow.

“Day 9 was a rest day at Camp 2 because the weather was really bad. All I did was sleep that day. If you’re gonna go to Camp 3, that means you’re gonna do a summit push the next day, because Camp 3 is so high. You’re just struggling to stay healthy. I felt really bad in the tent, but if I went outside to pee or walk around, I felt better. My pulse ox was still pretty low that day. That night, a snow storm blew in and it snowed a lot.” And it was the following day of their ascent to Camp 3 that Keshari made the decision not to summit.

Since returning from her expedition, she’s reflected on some other variables. “I swear I was hyponatremic (an abnormally low concentration of sodium in the blood). We went through four liters of water a day with no salt in the food. I was having these crazy cramps in my abs and my lats and places I don’t typically get them. To me, that has to do with electrolyte imbalance. Next time, I’m taking electrolyte tablets, not just stuff to mix in my water.

“I’m not very structured in my diet. In general I eat pretty clean, but I don’t count calories. I eat vegetables, but I also hate going grocery shopping. I feel like I eat a pretty balanced diet. If I buy meat, I’ll buy a pack of chicken and that’s my meat for a week or two.

“On the mountain, in general, I felt like they fed us way more fiber. In Argentina, they eat a lot of meat. They’re meat-eaters. They didn’t feed us steak on the mountain, but … at Base Camp, I felt like they were overfeeding us. We had pork chops one night, but on the mountain, I felt like it was mainly lentils and noodles. Even though you’re burning calories, how your body absorbs them is different. They really try to limit your salt intake because they’re concerned about having too high blood pressure. At Base Camp, breakfast was always scrambled eggs with bacon and toast. Lunch and dinner were always three course meals starting with a veggie broth soup. They fed us like kings … I brought Clif blocks with caffeine in them for hiking snacks, Lara bars.”

I ask about her main takeaway from it all:

“I think I need more time to acclimate. I don’t know how much more time, but maybe more time at about 16,000′. Maybe take Diamox. Someone suggested I should have been on an inhaled steroid, especially because my asthma is worse in the cold. If I were to go next time, I would want a couple more days at 15,000 – 16,000′. Maybe the Diamox is something I would need to use next time.

“The nerd in me wants to measure pulmonary wedge pressures (via very invasive catheters; you could go through the jugular), nothing practical,” she laughs. “The pulse oximeter is the easiest tool.”

One last thing she’d do differently? One of her colleagues bought a hypoxic generating system from Hypoxico, “which I think puts CO2 back into your system; sleeping high, training low. That might have been the best thing.”

Keshari went sky-diving back in Mendoza the day after returning from their descent. “I was expecting a lot of adrenaline jumping out of an airplane, but there was none. I enjoyed the freefall, but when the parachute went up, I got really nauseous. Maybe I had just been stressed for so long, there was no more adrenaline left. I was like, ‘Where’s the risk involved in this?'”

An illustrated oxy-journey.

Keshari also summited Cotopaxi earlier the same year. Read her own account here.

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

Dr. Chris’s HAPE Cheat Sheet

Inflammation and altitude can cause low oxygen. Inflammation is commonly caused by viral infections such as colds or influenza, but can occasionally occur with bacterial infections such as strep throat or pneumonia. Low oxygen, or hypoxia, is the result of fluid collecting in the air sacs of the lungs, called pulmonary edema.

There are three types of high altitude pulmonary edema (HAPE).

  1. Classic HAPE, recognized for over a century. occurs in visitors to altitudes above 8000 ft (2500m) beginning during the first 48 hours after arrival. Symptoms include cough, congestion, trouble breathing, and fatigue, all worse with activity.
  2. Re-entry HAPE occurs in people who are living at altitude, travel to lower altitude, and develop symptoms during the first 48 hours after returning home
  3. High Altitude Resident Pulmonary Edema (HARPE) is a recently recognized illness that occurs mostly in children who have an underlying respiratory illness and live at altitude, with no recent history of travel. They have oxygen levels below 89 and lower but do not appear toxic. They are fatigued but rarely have increased work of breathing.
Parents are often worried their children won’t wear a canula for oxygen, but they don’t typically mind.

Treatment of HAPE is oxygen. There may also be signs of asthma or pneumonia which are treated with bronchodilators and antibiotics. Most people with pneumonia at altitude do NOT have hypoxia. All three types of HAPE can reoccur, but typically not with every arrival at altitude or viral illness. Many of these patients are told they have pneumonia again and again, or severe asthma, and are treated with inhalers and steroids. Usually, this adds nothing to their recovery.

A chest x-ray may show typical infiltrates seen with pulmonary edema, but in mild or early cases, can look normal. There is no blood test for HAPE. Oxygen should be used continuously at a rate that raises the oxygen saturation into the 90’s. Length of treatment may be as short as 2 days or as long as ten days

Most importantly, owning a pulse oximeter and measuring oxygen levels in anyone at altitude with symptoms of cough, congestion, fatigue and trouble breathing with exertion can keep people out of the ER and ICU. HAPE can rapidly progress to respiratory failure and death if not recognized and treated expediently.