High-Altitude Lung Edema Can Mimic Pneumonia in Kids, Even Without Travel by Rob Goodier

Dr. Chris has the medical community talking about HAPE!!!

“Health providers should advise patients who live at or travel to high altitude to have a pulse oximeter and check their oxygen levels if they are unwell,” the study’s author, Dr. Christine Ebert-Santos at the Ebert Family Clinic in Frisco, Colorado, told Reuters Health…

Click the link to read more:

High-Altitude Lung Edema Can Mimic Pneumonia in Kids, Even Without Travel by Rob Goodier


Those precious epi-pens at altitude

With all the news about the 400% price increase in epi-pens, we don’t want to waste them. So what if we are backpacking at high altitude and eat some peanut butter by mistake in our energy bar? Then our face swells up like a chipmunk and we start to wheeze? We whip out the epi-pen from the external pocket of our pack only to find out it is frozen!!  Oh, oh. What do we do now? Good news! at the 7th World Congress of Mountain and Wilderness Medicine in Telluride we heard the exact scenario described. It happened to a scientist, who then did a study to measure the effectiveness of the epi-pen after freezing and thawing. It still worked! So don’t throw out your frozen epinephrine. thaw and use.

Another tip: if you can’t afford the new price of the epi-pen, maybe your physician could prescribe injectable epi with a syringe to have on hand.

Reflection to MRHAPE in the Mountains: Resident High Altitude Pulmonary Edema

In beginning my Physician Assistant rotation at Ebert Family Clinic I was introduced to the exciting research of Christine Ebert-Santos, MD.  The research surrounded a condition known as High Altitude Pulmonary Edema (HAPE). In growing up at altitude myself, at 6,926 feet in Jamestown Colorado, I have had some exposure to the effects of high altitude. Acute Mountain Sickness (AMS) is a condition that I am more familiar with and in reading Dr. Ebert-Santos’ research it became clear to me that HAPE is a more severe complication to those ascending to or living at altitude, especially if they develop an initial respiratory illness. In her paper Dr. Ebert-Santos describes several pediatric case studies that demonstrate the characteristics of this treatable condition. These patients presented with tachycardia (fast heart rate), tachypnea (fast breathing), decreased oxygen saturation, and rales (abnormal breath sound).  Many of the children described were seen directly after an initiating illness such as the Flu. While seen in the clinic, or during admission to the hospital, these patients were treated with oxygen. The fact that HAPE can be treated with something as simple as oxygen is noteworthy.

Through her research Dr. Ebert-Santos has demonstrated that HAPE should be considered in all pediatric patients presenting to clinics  or emergency rooms at altitude with hypoxia (decreased oxygen saturation) and a recent viral illness. Through placing HAPE in their differential diagnosis, clinicians can avoid giving excessive inhaled steroid treatments and unneeded antibiotics. Awareness of the prevalence of this disease in both travelers and residents alike ensures a decrease in the incidence of unfavorable outcomes from this potentially fatal condition.

Submitted by Kelly Kyte, Physicians Assistant Student from Red Rocks Community College Fall Rotation 2016

“Home Remedy” by Ted Katauskas

Colorado Summit Magazine Summer-Fall 2016

In the Summer/Fall 2016 issue of Colorado Summit there is an interesting article entitled “Home Remedy” by Ted Katauskas.  A company, called Altitude Control Technologies, in Denver can install an air separator that continuously controls the amount of oxygen in a room based on barometric pressure and people entering and exiting that room.  So far, these devices have been used commercially and are now beginning to be used in high-priced dream homes.  There are medical implications of this technology for possible treatment of high altitude illnesses such as hypoxia or HAPE (High Altitude Pulmonary Edema).  For children, the implications would be adequate perfusion of oxygen to the organs to carry out life’s functions and promote healthy growth.  Imagine being able to treat hypoxia in the home by simply the push of a button.  Currently, this technology is very expensive.  It does beg the question, could an air separator be subsidized by insurance, or added into the construction of a new home?  Certainly, this technology holds promise for possible future treatment. 

Submitted by Joe Brath, NP Student from Georgetown University rotating Summer 2016