Category Archives: Child Growth & Development

Children grow and develop differently at high altitudes than they do at sea level

Dr. Chris’s HAPE Cheat Sheet

Inflammation and altitude can cause low oxygen. Inflammation is commonly caused by viral infections such as colds or influenza, but can occasionally occur with bacterial infections such as strep throat or pneumonia. Low oxygen, or hypoxia, is the result of fluid collecting in the air sacs of the lungs, called pulmonary edema.

There are three types of high altitude pulmonary edema (HAPE).

  1. Classic HAPE, recognized for over a century. occurs in visitors to altitudes above 8000 ft (2500m) beginning during the first 48 hours after arrival. Symptoms include cough, congestion, trouble breathing, and fatigue, all worse with activity.
  2. Re-entry HAPE occurs in people who are living at altitude, travel to lower altitude, and develop symptoms during the first 48 hours after returning home
  3. High Altitude Resident Pulmonary Edema (HARPE) is a recently recognized illness that occurs mostly in children who have an underlying respiratory illness and live at altitude, with no recent history of travel. They have oxygen levels below 89 and lower but do not appear toxic. They are fatigued but rarely have increased work of breathing.
Parents are often worried their children won’t wear a canula for oxygen, but they don’t typically mind.

Treatment of HAPE is oxygen. There may also be signs of asthma or pneumonia which are treated with bronchodilators and antibiotics. Most people with pneumonia at altitude do NOT have hypoxia. All three types of HAPE can reoccur, but typically not with every arrival at altitude or viral illness. Many of these patients are told they have pneumonia again and again, or severe asthma, and are treated with inhalers and steroids. Usually, this adds nothing to their recovery.

A chest x-ray may show typical infiltrates seen with pulmonary edema, but in mild or early cases, can look normal. There is no blood test for HAPE. Oxygen should be used continuously at a rate that raises the oxygen saturation into the 90’s. Length of treatment may be as short as 2 days or as long as ten days

Most importantly, owning a pulse oximeter and measuring oxygen levels in anyone at altitude with symptoms of cough, congestion, fatigue and trouble breathing with exertion can keep people out of the ER and ICU. HAPE can rapidly progress to respiratory failure and death if not recognized and treated expediently.

The Legacy of the Mountain Guru: Prof. Dr. Gustavo Zubieta-Castillo

We’ve published a series of accounts from Dr. Chris’s recent attendance at the 7th Annual Chronic Hypoxia conference in La Paz, Bolivia , conducted by Dr. Gustavo Zubieta-Castillo. He is one of the world’s leading experts of altitude medicine and Dr. Chris’s collaboration and contact with him has added literally phenomenal insight into our own high altitude research.

Dr. Chris “en Teleférico” with fellow altitude researchers Vanessa Moncada, Diana Alcantara Zapata, Dzhunusova G. S., Oscar Murillo, and Alex Murillo. Photo courtesty of Dr. Zubieta-Castillo.

There is something literarily romantic about the scientists who are compelled to remind you, “I’m not crazy!” Dr. Zubieta-Castillo has held soccer games at 6,542 m (21,463′), proving the remarkable adaptability of the human body. He maintains a high altitude training lab, called the Chacaltaya Pyramid, at 5,250 m (17,224′). In his recent video (below), he illustrates the connection between longevity and elevation, where citizens of the highest cities in South America live to be well over 100.

It’s notable that a city known for its wine at 2,790 m (9,153′), called Chuquisaca, boasts some of the oldest residents. Not surprisingly, our research has led us to some speculation on the relationship between alcohol and the body at altitude. Additionally affirming is Dr. Zubieta-Castillo’s father, nicknamed “El Guru de la Montaña”, who began his legacy of altitude research and medicine by examining the hearts of dogs at altitude (sound familiar? See our article on Dogs at Altitude), as well as Dr. Zubieta-Castillo’s own testament that asthma can be and has been treated by altitude (see Asthma at Altitude).

His latest correspondence with Dr. Chris and their mutual colleagues reads like letters written by history’s greatest scientists, beginning,

Dear Colleague Scientists:

The 7th Chronic Hypoxia Symposium, thanks to your outstanding participation was a great success !! We shared great scientific, friendship and enthusiasm from 16 countries, along with travel and conferences in fascinating environments, all at high altitude.

The letter ends with an invitation to all colleagues to contribute their own research to the first chronic hypoxia-dedicated issue in a top medical journal, so be on the lookout for Dr. Chris’s contribution (which we will be sure to share here).

The video below is a fascinating look into some of Dr. Zubieta-Castillo’s latest research, including his theories and recommendations on conditioning humans in space with hypoxia, a dissertation that was initially dismissed as irrelevant, then subsequently published. Enjoy!

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

What’s Going On in La Paz?

The 7th Chronic Hypoxia Symposium was held this year in La Paz, Bolivia, in February and March. La Paz, sitting at 11,942 ft. (3640 m), is home to one of the world’s leading researchers of the effects of chronic hypoxia, Dr. Gustavo Zubieta-Calleja, with whom Colorado’s own Dr. Christine Ebert-Santos was able to meet with during her attendance of the symposium. You can refer to her previous article on the gathering of experts from over 16 countries for her own account of Dr. Zubieta-Calleja’s impressive work.

Below is the renowned Dr. Sanjay Gupta’s own account on video of his introduction to the experience of hypoxia and altitude with Dr. Zubieta-Calleja.

Always keep in mind, there are many physiological reactions going on when your body and brain are at altitude, and the higher the altitude, the more extreme the effects. Benefitting from a hypoxic environment isn’t as simple as staying hydrated. When we talk about chronic hypoxia, we are typically referring to a population who have spent many years in a high altitude environment.

robert-ebert-santos
Roberto Santos on an epic powder day at the opening of The Beavers lift at Arapahoe Basin ski area.

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

Technology in Health Care: Interview with Family Nurse Practitioner Tara Taylor

After over a decade of serving pediatric patients in the high country communities of Colorado as Ebert Children’s Clinic, we opened up our health care practice to serve the needs of the adult population several years ago. As Dr. Chris can attest to, the world of health care has grown and evolved incredibly since she first opened up her practice in Colorado in 2000, and we all continue to learn from the providers we welcome to our team as well as the students we mentor.

Family Nurse Practitioner Tara Taylor.

This past year, we’ve had the pleasure of having Tara Taylor, FNP on our staff. She’s brought a wealth of knowledge and unique experience from having practiced on a medical campus much, much larger than our little mountain clinic, and her insight into everything from patient care to our own high altitude research projects continues to be an invaluable asset to both our practice and our community. She was so gracious one afternoon to have a chat with me between patients:

How did you find yourself in Colorado’s high country health care community?

So, I have actually lived here since 2004, so I’ve lived here 15 years. I came out here for 6 mos to ski, and stayed for 15 years. I found myself loving it, bought my first house and decided to stay out here. I’ve actually commuted down to Denver all this time, because I had originally started in New Jersey in 2002 in Critical Care. So when I moved out here I wanted to be in the mountains, but I also couldn’t do Critical Care up here at that time. So I decided to commute down to Denver for three 12-hours shifts a week, and then live up here four days a week. So I had an apartment in Denver … when I went back to NP school, my goal was to work and live in my own community. I think that’s huge for me … and not only be serving the population of Denver, but to be serving the people of my actual community.

How long had you been practicing in Denver?

Since 2005, because I worked 6 months at Keystone Clinic, so I’ve been in Denver working for 14 years  prior to this in the ICU. And I’ve worked at Children’s hospital in the pediatric ICU, burn ICU’s, bone marrow transplant, open-heart surgery, neuro-trauma, multi-system trauma, all of it.

How is it different working up here, for a small clinic, at that?

This is a huge change … I’m still working down there once a month, so I get to go down and play and enjoy that type of intensity. But at the same time, coming back here, I think that the critical care aspect … it still plays a role here. And in my letter, when they said, “Why do you want to go from [being] an ICU nurse to family practice?” … I said for so long, I’ve seen patients in the ICU [whose] admission or … critical portion of their admission could have been avoided if they had better focus on primary care and had their needs met. If they had been on the right medications, if someone had spent the time — and sometimes it’s because of their own compliance — but with adequate primary care, we’re avoided what I was seeing in the ICU. 

Now, being in primary care, I get the stimulation I need from the independence of it, making these decisions, and I really enjoy finding out what’s going on with the patient, deciding what tests to run, and getting back these results and being able to properly refer them. I enjoy the time that I’m able to have with those patients here at a private practice. So each patient gets the time that they need to be properly cared for. 

And I’m just seeing extremely sick patients. I’m not seeing a lot of sore throats and earaches, unless you’re 2 years old; besides that, the adults have really complex diagnoses that require a lot of thought. And in its own respect, it’s critical to me.

Great segue: what are the greatest challenges you’ve seen practicing up here?

I think some of the biggest challenges that I have seen up here is limitation of services. That’s why this clinic is bringing up Nephrology, … [expanding] mental health services here, and then, to bring in … pain management specialty, and give them a place to practice … It’s really hard for these additional specialties. We have Cardiology up here, we have Pulmonology, but some of the smaller things like Rheumatology for rheumatoid arthritis, for osteoporosis and kidneys … how do you establish your practice up here? So hopefully, as focused as [Ebert Family Clinic] is in the community about being able to provide the care we want for our patients …  we’ll be able to get that door open for those specialties and help them establish their practice up here, which is our goal.

How do you get connected to these services like Genomind?

[This patient] came to me with Genomind. I had not heard of that before. He said, “I got on the right medications because this genetic testing gave [Compass Health] the ability to treat me properly.” [Certain health care providers in Denver] require it, almost, for every patient walking in their door as a prerequisite to help them make medication decisions. 

Genomind is a swab in the cheek. I think it’s huge, because we’re not able to “draw” neurochemicals. We’re not able to draw your blood and say, “oh, look, you’re deficient in serotonin.” Because that’s not an option, what’s the best way for us to figure out what’s the best medication for you? Because medications are very specific to what they’re treating. So the only thing we’ve been able to do for the last decade is to guess; to put you on something, and if it doesn’t work, then we know that’s not the thing. And that’s a terrible process, because it leads patients to trying five medications, over a ten-year period, and finally we get them on the right thing. But how frustrating that is for patients; they lose confidence in their providers, they lose confidence in the system, they feel neglected, they feel frustrated. And to have that stamina to even go through that process … I think we have a lot of patients drop off. [They] end up saying, “Forget it. Medications don’t work for me.” Then [they] become non-functional … their quality of life is hindered by their [unwillingness] to spend ten years trying five medications.

That is not the best process. And I think the people that went ahead and engineered Genomind said, “What else can we do? What if we went back to genetics? What if we went back to genes?” We can swab a 1-day old infant or a 95-year old man, and we are going to get their genetics. And when they did the Human Genome Project, and we got our entire genetic profile as human beings, the science behind Genomind was they were able to take anyone who’s been diagnosed with schizophrenia, people who are known bipolar, generalized anxiety disorder, major depressive disorder, took their DNA … laid them over each other, and said, “What gene is predominant in all these patients?”

So they were actually able to use hundreds of thousands of mental health patients to establish what genes these were that led to the cause of their mental illness. So now we’re able to send off DNA with a swab in the cheek. It’s not a perfect science, but it’s what we have.

Is this better than nothing? There’s so much controversy about this test. How can you think this is controversial when you come from a science background as a provider, as a physician. You’ve got this, or you have nothing to guide you for the mental health of these patients. If we have this over nothing, I will take this.

[Genomind testing] is not only [about] mental health disorders, but also [for] people [suffering from] eating disorders, difficulty losing weight, ADHD, alcohol addiction and propensity for opioid addiction. It would identify what patients we may never want to start on narcotics if at all possible. It tells us, “Don’t start this patient on this particular drug because they’re at risk for gaining weight with this drug, like as an atypical antipsychotic.” It would tell us which medications an alcoholic would respond to best, if they were wanting to quit drinking and needed medication assistance. We have a lot of kids who seem like they’re ADHD, but really they have signs of anxiety and depression as well. And it’s our job to distinguish [whether] it’s the ADHD that’s causing the depression and anxiety, or it’s the depression and anxiety that’s causing the inability to focus? It’s absolutely fascinating! I want the community to know that we’re offering that here at the clinic.

Is Genomind available to children?

We can test anyone of any age. We can swab the cheek of a one-day old. I actually had a mom in here that said she was tested positive for both genes for the lack of ability to metabolize L-methylfolate, which causes bipolar disorder or mood instability. She came in here with her 4-month old son and said, “When can I get him tested to know?”

So I actually asked Genomind, and Genomind said you could test a brand new newborn baby, which at some point may be the standard of practice!

But at this point, it’s hard to want to test that child, because we’re not able to treat that child [without symptoms]. Once that child becomes 6 or 8 years old, and they are having mood instability, they are showing signs of some sort of mental illness, we do realize we are able to identify this in children. We don’t need to wait until people are 18 to say they must have a mental illness. We are identifying that in the behavior of hyperactive two and three year olds, and we’re seeing them grow up to be bipolar adults. So we are seeing early signs and symptoms of mental illness in these children. 

Could we test a 6-year old who is showing signs of something and have them be positive for these genes and be able to supplement them with L-methylfolate or an approved psychiatric medication in the pediatric population based on their genetics? This is absolutely going in that direction. Genomind said they’re 100% approved for adult and pediatric testing.

How do you find balance for yourself and maintain a healthy lifestyle?

Tara with Dr. Chris (center) and Kristen Duffy, A/GNP, at Ebert Family Clinic.

Working at this clinic actually provides me with the exact hours I need to have good work-life balance. That’s extremely important to Dr. Chris Ebert-Santos. When I started working here, she said, “What are your husband’s days off?” And I said, “Sunday-Monday,” she said, “Okay, well you’re not working Sunday-Monday then.” I just honestly couldn’t believe it, that my happiness was that important to her. I work reasonable hours. [Dr. Chris] provides me with the days off that will match my husband’s. I have great quality of life due to my husband. He’s an amazing person, wonderful and spirited, and we get along great. So we have that, and we have our two dogs, and we live a comfortable life up here. We love to do all the great stuff that Summit Countiers do: snowboarding, hiking, biking, camping, just getting outside in general together and playing with our dogs. And that’s what’s most important.

What have been your greatest takeaways from working in Summit County so far?

I think it’s running into that patient at the supermarket who, I know in the back of my head I have their diabetes controlled. To know that I’m specifically helping patients in my community. That I’m doing yoga next to someone [whose] blood pressure is controlled now because of me. I think that’s something really special and it’s not something that I had before when I worked in Denver, and I would come home and I would never see those people again. And then, having the opportunity in this clinic to deal with so many pediatric patients, since this was originally a pediatric clinic [before] expanding to adult services as well, which is amazing. But the amount of pediatrics in this clinic really improves both my exposure to every age group. I love kids. To have patients hug me in this office who have had a very challenging diagnosis … that “thank you” from patients is something I cannot replace.

Tara continues to be a passionate advocate for mental, women’s and sexual health, and a valuable resource as a health care practitioner. Ebert Family Clinic is proud to have her.

robert-ebert-santos
Roberto Santos on an epic powder day at the opening of The Beavers lift at Arapahoe Basin ski area.

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

Stroke, High Altitude, and EPO

A 2009 study from Switzerland found a 12% decrease in risk of death from stroke at 6430 ft. compared to 850 ft.  This result was more pronounced in men than women.  Since men are more physically active than women in Switzerland, it was thought the exercise at the more hypoxic conditions of higher altitude may benefit them more than for women.  The study also noted that being born at a higher altitude had a protective effect on death from cardiovascular disease1

Strokes occur when blood flow to parts of the brain is cut off causing neurons and other brain cells to die within minutes.  Strokes can either be ischemic or hemorrhagic.  80-87% of strokes are ischemic, which means that blood flow to the brain is cut off from a blood clot or other blockage of a blood vessel going to or in the brain.  Hemorrhagic strokes are caused by bleeding within the brain (intracerebral space) or in the space surrounding the brain filled with cerebrospinal fluid (subarachnoid space).  Risk of stroke is higher in individuals with previous transient ischemic attack (TIA), high blood pressure, previous heart attack, atrial fibrillation, enlarged left atria of the heart, smoking, heavy alcohol use, diabetes, obesity, high cholesterol, and stenosis of the carotid artery2.

Interestingly, on initial exposure to hypoxia at high altitude, blood flow to the brain increases which is split equally between gray and white matter.  After 4 to 5 days, blood flow to the brain decreases but is still 13% greater than at sea level.  The increased blood flow is needed to maintain adequate delivery of oxygen when the oxygen content of the blood is lower during hypoxia, until other acclimation mechanisms take effect3.

As noted in previous blog posts in response to hypoxia, erythropoietin (EPO) is also released, which increases the production of red blood cells to increase the oxygen-carrying capacity of our blood.  Other studies have found that EPO also has a protective effect on neurons.   Cerebrovascular endothelial cells have been found to have receptors for EPO and are thus able respond to EPO.  Other studies have found that EPO is also involved in brain development of a fetus in utero.  Animal studies suggest EPO not only protects neurons from cell death but may enable their regeneration as well.  If this translates into humans, it is an important effect for those at risk for stroke4.

In a small clinical trial, patients with middle cerebral artery stroke received IV EPO daily for 3 days after their stroke.  These patients had better neurological outcomes with increased physical functioning and independence as measured by Barthel index test results.  Following the EPO doses, the size of the cerebral infarct, the damaged area of the brain from blood being cut off during the stroke, was reduced as well4.

Based on this research, Ismailov hypothesized that in the United States, geographic variation in levels of EPO from altitude differences may account for the differences in risk of death from stroke.  He termed it the “stroke belt” in the Southeast, with higher rates of death from stroke compared to the Mountain states.  

The states in the “stroke belt” are Louisiana (LA), Mississippi (MI), South Carolina (SC), Alabama (AL), Georgia (GA), Arkansas (AK), Indiana (IN), North Carolina (NC), Kentucky (KY), Tennessee (TN), and Virginia (VA), and all are at lower altitude.  The mountain states have higher altitude and are North Dakota (ND), Kansas (KS), Nebraska (NE), Arizona (AZ), New Mexico (NM), Wyoming (WY), and Colorado (CO).   

Louisiana and Mississippi’s average altitudes are 100 and 300 ft. compared to Colorado and Wyoming with average altitudes of 6800 and 6700 ft4.  Since there is increased EPO released in individuals living at higher altitudes, perhaps there is more of a neuroprotective effect at higher altitudes, contributing to the observed lower risk of death from stroke seen in the Swiss study.  

Symptoms of Stroke5

Think F.A.S.T

Other signs are sudden

  • Numbness of face, arm, or leg and particularly numbness on one side of body
  • Confusion
  • Difficulty seeing out of one or both eyes
  • Difficulty walking
  • Feeling of dizziness, loss of balance, or coordination
  • Severe headache with no identified cause

For more information: https://familydoctor.org/condition/stroke/

o en Español: https://es.familydoctor.org/condicion/accidente-cerebrovascular/

Author and PA student, Stephanie Schick

Stephanie Schick is a Physician Assistant student at Rocky Vista University in Parker, CO.  She is born and raised in Fort Collins, CO.  She started off her clinical year working in pediatrics with Dr. Chris at Ebert Family Clinic.  The remainder of her clinical year will be spent closer to home in northern Colorado.   In her free time she enjoys spending time with her husband, friends, and family in the beautiful Colorado sunshine.

Spring Recap 2019

We’ve learned a lot in the high country this season! For example, it isn’t too late or too warm for a snowstorm. We’ve conducted several interviews with professional, high-altitude athletes, athletic and tourism organizations in Summit County, physicians, podcasters, interns, and a local brewer. They’ve shed so much light on fitness, health, child growth & development, and acclimation at elevation, it warrants a re-cap:

  1. 8,000 ft. seems to be the pivotal elevation at which the body starts to experience a significant deficit in the oxygen and water it needs to function, affecting everything from sleep to metabolism.
  2. A plant-based lifestyle has benefitted athletes under extreme training and competitive conditions at altitude.
  3. Training at altitude significantly reduces your ability to reach cardiovascular and strength goals, even while preparing your respiratory and circulatory systems for the severe decrease in oxygen. “Live High, Train Low” is an effective strategy more and more athletes are advocating for.
  4. Preparation for backcountry excursions is as much mental as physical.
  5. Foods high in nitrates (like red beets, red bell peppers and arugula) can facilitate acclimation and recovery.
  6. Oily foods may inhibit your body’s ability to cope with a significant increase in altitude.
  7. We metabolize and experience the effects of alcohol differently at altitude.
  8. Current research suggests some people suffering from Parkinsons disease may experience some relieve from symptoms at higher elevation.
  9. Increased muscle mass requires increased oxygen. Being an athlete does not necessarily mean you will have an easier time acclimating.
  10. As always, the best way to facilitate acclimation and deal with symptoms of altitude sickness is to drink plenty of water, allow yourself ample rest, and monitor your blood oxygen saturation levels with a pulse oximeter.

Be sure to subscribe to keep up with what this summer has in store for your elevated experiences at altitude! And if you have any questions or are eager to read more about a particular topic, let us know in a comment!

Beneficial Effects of Chronic Hypoxia

Living in Summit County, Colorado has its perks – residents are within a 20 to 40 minute drive to five world class ski resorts, and some of the most beautiful Rocky Mountain trail systems are accessible right out our back door. With the endless opportunities drawing residents outdoors to partake in physical activity, it comes as no surprise that Summit County is considered one of the healthiest communities in the country. However, there may be more than meets the eye when it comes to explaining this, as it also has something to do with the thin air.

As a Summit County native, you have likely heard the term “hypoxia” or “hypoxemia” mentioned a time or two. So what does this mean? Simply put, these words describe the physiological condition that occurs when there is a deficiency in the amount of oxygen in the blood, resulting in decreased oxygen supply to the body’s tissues. When this occurs in the acute setting, it may result in symptoms such as headache, fatigue, nausea, and vomiting. These are common symptoms experienced by those with altitude illness, also known as acute mountain sickness. While these symptoms can cause extreme discomfort and may put a huge damper on a mountain vacation, they are not usually life threatening. However, in a small number of people, development of more serious conditions such as a high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE) can occur. The treatment for all conditions related to altitude illness is oxygen, whether via return to lower elevations or by a portable oxygen concentrator that allows you to stay where you are. While altitude illness generally affects those who rapidly travel from sea level to our elevation, it has also been known to affect residents returning home to altitude, usually after a period of two or more weeks away. In a very small subset it can occur after a period of only a day or two. This generally occurs in those with a preexisting illness, where altitude exacerbates the condition.

While the acute effects of altitude can clearly have detrimental effects on one’s physical well-being, there is emerging research demonstrating that chronic hypoxia may actually come with several health benefits. Long time Summit County business owner and community pediatrician, Dr. Chris Ebert-Santos of Ebert Family Clinic in Frisco, has spent quite some time studying the effects of chronic high-altitude exposure, and recently attended and presented at the Chronic Hypoxia Symposium in La Paz, Bolivia, the highest capital city in the world.

It is important to first understand the adaptations that occur in our bodies as a result of long-term hypoxia. The ability to maintain oxygen balance is essential to our survival.

So how do those of us living in a place where each breath we take contains about ⅓ fewer oxygen molecules survive?

Simply put, we beef up our ability to transport oxygen throughout our body. To do this, our bodies, specifically the kidneys, lungs and brain increase their production of a hormone called erythropoietin, commonly known as EPO. This hormone signals the body to increase its production of red blood cells in the bone marrow. Red blood cells contain oxygen binding hemoglobin proteins that deliver oxygen to the body’s tissues. Thus, more red blood cells equal more oxygen-carrying capacity. In addition to increasing the ability to carry oxygen, our bodies also adapt on a cellular level by increasing the efficiency of energy-producing biochemical pathways, and by decreasing the use of oxygen consuming processes2. Furthermore, the response to chronic hypoxia stimulates the production of growth factors in the body that work to improve vascularization2, thus, increased ability for oxygenated blood to reach its destination. 

So, how can these things offer health benefit?

To start, it appears that adaptation to continuous hypoxia has cardio-protective effects, conferring defense against lethal myocardial injury caused by acute ischemia (lack of blood flow) and the subsequent injury caused by return of blood to the affected area3. The exact mechanism of how this occurs is not well understood, but it seems that heart tissue adapts to be better able to tolerate episodes of ischemia, making it more resistant to damage that could otherwise be done by decreased blood flow that occurs during what is commonly known as a heart attack. This same principle applied to ischemic brain damage when tested in rat subjects. Compared to their normoxic counterparts, rats pre-conditioned with hypoxia sustained less ischemic brain changes when subjected to carotid artery occlusion, suggesting neuroprotective effects of chronic hypoxia exposure4.

Additionally, it appears that altitude-adapted individuals may be better equipped to combat a pathological process known as endothelial dysfunction5. This process is a driving force in the development of atherosclerotic, coronary, and cerebrovascular artery disease. Altitude induces relative vasodilation of the body’s blood vessels compared to lowlanders2. A relaxing molecule known as nitric oxide, or NO, assists with causing this dilation, and in turn the resultant dilated blood vessels produce more of this compound5. The molecule has protective effects on the inner linings of blood vessels and helps to decrease the production of pro-inflammatory cytokines that damage the endothelium5. This damage is what kickstarts the cascade that leads to atherosclerosis in our arteries. Thus, a constant state of hypoxia-induced vasodilation may in fact decrease one’s risk of developing occlusive vascular disease. 

The topics mentioned above highlight a few of the proposed mechanisms by which chronic hypoxia may be beneficial to our health. However, do keep in mind that there are potential detrimental effects, including an increased incidence of pulmonary hypertension as well as exacerbation of preexisting conditions such as COPD, structural heart defects and sleep apnea, to name a few6. Research regarding the effects of chronic hypoxia on the human body is ongoing, and given its significance to those of us living at elevations of 9,000 feet and above, it is important to be aware of the impact our physical environment has on our health. Dr. Ebert-Santos is avidly involved in organizations dedicated to better understanding the health impacts of chronic hypoxia, and has several current research projects of her own that may help us to further understand the underlying science.

Kayla Gray is a medical student at Rocky Vista University in Parker, CO. She grew up in Breckenridge, CO, and spent her third year pediatric clinical rotation with Dr. Chris at Ebert Family Clinic. She plans to specialize in emergency medicine, and hopes to one day end up practicing again in a mountain community. She is an avid skier, backpacker, and traveler, and plans to incorporate global medicine into her future practice.

Citations

  1. Theodore, A. (2018). Oxygenation and mechanisms for hypoxemia. In G. Finlay (Ed.), UpToDate. Retrieved May 2, 2019, from https://www-uptodate-com.proxy.rvu.edu/ contents/oxygenation-and-mechanisms-of-hypoxemia?search=hypoxia&source=search_ result&selectedTitle=1~150&usage_type= default&display_rank=1#H467959
  2. Michiels C. (2004). Physiological and pathological responses to hypoxia. The American journal of pathology, 164(6), 1875–1882. doi:10.1016/S0002-9440(10)63747-9. Retrieved May 2, 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1615763/ 
  3. Kolar, F. (2019). Molecular mechanism underlying the cardioprotective effects conferred by adaptation to chronic continuous and intermittent hypoxia. 7th Chronic Hypoxia Symposium Abstracts. pg 4. Retrieved May 2, 2019. http://zuniv.net/symposium7/Abstracts7CHS.pdf
  4. Das, K., Biradar, M. (2019). Unilateral common carotid artery occlusion and brain histopathology in rats pre-conditioned with sub chronic hypoxia. 7th Chronic Hypoxia Symposium Abstracts. pg 5. Retrieved May 2, 2019. http://zuniv.net/symposium7/Abstracts7CHS.pdf
  5. Gerstein, W. (2019). Endothelial dysfunction at high altitude. 7th Chronic Hypoxia Symposium Abstracts. pg 11. Retrieved May 7, 2019. http://zuniv.net/symposium7/Abstracts7CHS.pdf
  6. Hypoxemia. Cleveland Clinic. Updated March 7, 2018. Retrieved May 9, 2019. https://my.clevelandclinic.org/health/diseases/17727-hypoxemia

Portrait of a High-Altitude Athlete: The Ultra Mountain Athlete

Yuki Ikeda has been a professional cyclist for the past 10 years. He’s won titles in both Japan and the US. Interestingly enough, however, he come to Colorado to study at Metro State in Denver in order to play pro basketball. He is now known as an Ultra Mountain Athlete, not only biking, but running races up to 100 miles at altitudes over 10,000 ft. Over some decaf coffee on a warm Sunday afternoon at Gonzo’s in Frisco, he tells me he tried out every semester for the college team and failed. He had never really explored outdoor recreation growing up in Japan, because he had been so focused on a career in basketball.

He started taking some classes on outdoor sports while he was in Colorado, at Metro and then at Red Rocks Community College: rock climbing, cycling, backpacking, kayaking … He ended up staying in Colorado after graduating from Metro. “At that time, I was so into mountain biking,” he says. “I decided to pursue my career in mountain biking.”

He started racing in 2002. It took him five years to accumulate sponsors and become a full-on pro. “After every season, I sent my resume — racing results and what I do — to so many teams [to see if] they [would] accept me or not.”

Ultra Mountain Athlete Yuki Ikeda

But he started to get burned out. While he was still improving his stats, he was noticing that he couldn’t maintain the lead against some up-and-coming younger racers. “I was mentally very tired the last couple of years. I was kind of frustrated. Last year, after the season, I was so bummed out, I didn’t want to ride my bike, and I didn’t feel like starting training for the next year, so I stayed away from biking. I didn’t even touch my bike for a month.”

“But I still wanted to do some exercise. I just followed my wife, running, then I kind of joined the local trail running community. They showed me where to go and where to run, and I just loved it. I was so into mountain biking only, I thought doing other sports might cause injuries and effect my career. But it was the opposite.”

His new love for running turned his career around. “Physically, I don’t know [if it has improved my biking] yet, but mentally it helped. Now, my training is still 60 – 70% cycling, but not all the time. When I get on the bike, my brain is still fresh. Before, I rode my bike every day, pushing hard every day. It burned me out.”

Last month, he ran his first ultra running race, 50K. “Last October, I got sore from just running only 5K. Now I an run 50K, so that’s awesome.” He won.

Ultra Training at Altitude

I ask him how he trains for these races. Every summer, he comes to Colorado, staying in Frisco or Breckenridge to train in preparation for a series of races at altitude. It usually takes him 10 days to almost 3 weeks before he can do the same workouts he does at sea level in Tokyo.

Threshold power key. Threshold power is the maximum power you can sustain for about 60 minutes. He has a power meter on his bike that measures the power he exerts in watts. Recently, he has also been wearing a similar device on his shoe for when he runs.

“In Tokyo, my number is 310 watts, but here, it’s almost 270 to 280. I just did a threshold test last week. So that’s almost 10 to 12% lower. But still, if it’s within 10 to 15%, that’s very good for this altitude. But I usually take the test after a week or 10 days after I get here. I cannot push myself hard enough [before that]. Even [if] you’ve adjusted to this altitude, your power number is still lower than at sea level. I feel like I’m weak, but you have to accept it. That’s just how it is.”

His next race is part of the Leadman series, consisting of 5 mountain biking and trail running races in Leadville, Colorado. This next one is 42 km. Originally, the trail takes the runners over Mosquito Pass, which is at over 13,000 ft. But this year, there is still so much snow that the trail has been re-routed, so the runners aren’t sure what to expect. But the race starts at over 10,000 ft.

To train for this, he’s been running and biking six days a week. Every morning, he measures his blood oxygen saturation using a pulse oximeter. The first morning he arrived in Frisco, it was at 92. After a couple weeks of acclimation and training, it’s pretty reliably at 96 every morning.

Pacing

Yuki claims the most difficult part about running these long races is pacing. His coach encouraged him to run “negative splits”, increasing his speed toward the end of the race. “At my first 50 km race, even though I won it, I could have paced myself better. I just went too hard at the beginning [to] take the lead and paid for it later in the race. I was so trashed after the race, I couldn’t even stand and walk.”

“My coach is saying to be careful about [hitting the wall] at altitude. It’s so hard to recover. It takes almost five times longer than at sea level. I need to pace myself, especially for running 100 miles,” Yuki says, referencing the Leadville Trail Run in August he is also preparing for: 100 miles at altitude. “I’m so excited, but at the same time, I’m so nervous. Even finishing is questionable at this point.”

Acclimation

His secret to acclimating comfortably and quickly is actually movement. He says he feels the affects of the elevation more when he’s sedentary. In order to get more oxygen to his body, he has to get his circulation going. “The first week, I feel better when I exercise than when I just sit [around]. “

Also, beets. And red bell pepper. And arugula.

He eats a limited portion of these every day he’s at altitude. These vegetables provide a lot of nitrates, which your body processes into nitric oxide, facilitating blood circulation. At altitudes over 8000 ft., where you have access to about a third of the oxygen available in the air at sea level, the key to supplementing the oxygen your body requires is increased blood flow. After a certain amount of time, your body starts creating more oxygen-carrying red blood cells to counter the deficit, so getting the blood moving is literally vital.

According to high-altitude growth and development expert Dr. Christine Ebert-Santos, nitric oxide is often the way newborn babies with complications at altitude are treated. Hypoxia (the state of receiving less oxygen than is normal at sea level) causes pulmonary vessels (in the lungs) to constrict. Putting these infants on nitric oxide gas dilates the pulmonary arteries and improves some types of respiratory distress.

There are powders marketed to aid the food version of this nutrition, including BeetElite, Yuki’s product of choice, which he’ll add to his sports drinks in addition to consuming about an ounce of roasted beets. But portion control is also important, as too much nitrate can also have a negative effect on the body.

Running Recovery

Yuki is learning that he has to deal with an interesting phenomenon when it comes to his ultra running races: it’s tough on his guts. When it comes to his diet, he doesn’t typically change anything for recovery after a long event. “But I think my guts are more tired, because your body is bouncing so much from running.”

When running these incredible distances, he fuels his body with an energy gel every 20 to 30 minutes while running. “It usually has about 100 to 120 calories. It’s a dense energy. Then you take them for five hours, continuously, so it also tires out your guts. During the race. You have to maintain your blood sugar and keep your muscles moving. My muscles are tired, but also, my intestine and stomach are tired.”

“Even water is hard on my stomach [after running a race]. I’m kinda worried about running 50 and 100 miles. I’m not only worried about my legs, but even my stomach. I’m not used to [consuming] energy for 20 hours, eating and running at the same time.”

In Japan, hot springs and bathing are also a huge, sacred part of the recovery and health ritual. He takes a hot bath almost every day, “especially in winter,” he says. “It helps me to sleep at night.”

Sleep

The first week he spends at altitude in Colorado, he finds it harder to fall asleep. “I used to take one or two melatonin capsules every night, but it’s hard to tell if it helped. I just go to bed early, like 8 or 9, even if I cannot fall asleep. I just take the time to lay down and recover. [I try to sleep] at least 7 to 8 hours a night, but sometimes it’s hard. If I can’t get that amount of sleep, I usually take a nap after training.”

This may sound obvious, but sleep is when your body does most of its recovery, both mentally and physically. Sleep experts and studies have proven that the body and brain visibly deteriorate after so much sleep deprivation. And at altitude, with less oxygen available to supply a body in constant motion, sleep may be more important than ever.

Plant-based Nutrition

Yuki isn’t the first high-altitude athlete I’ve spoken to who advocates for a plant-based lifestyle. In a recent blog, skier and duathlete Cierra Sullivan also tells us about how a plant-based diet seems to make a big difference.

“When I used to like and eat animal products a lot, my recovery time was slower than now. It was hard to digest animal fats. I believed that they had a lot of good protein, but it was so hard on your body and digestive system,” Yuki says. “It took time to change my diet, but I now feel more comfortable with my plant-based diet, physically and mentally.”

Live High Train Low

Another recurring theme among high-altitude athletes.

“One of my sponsors has an altitude tent. They leased it to me before the competition, so I used it about a month. I slept in the tent, set at about 3000 m, then I train at sea level. I think it helped a bit, but it might be too short to tell. It tired me [out], though. I think I needed to do it longer before the competition, like, two or three months. I couldn’t train well, because I felt tired all the time. But I think for altitude training, I think this elevation is almost too high. Because you cannot push to your maximum potential. For example, for cycling, I can push up to 1000 – 1200 watts at sea level, but I cannot hit that number here, so I cannot train in that range here. I can lose that high power if I stay longer here. But it depends on your [goal]. My [goal] is winning the Leadman series, that’s why I’ve come here to train.”

This is partly why Yuki will lift weights once a week when training at altitude, “to maintain my high power.” With such limited access to oxygen, athletes up here can’t reach the same “punching power” that they can at lower elevations, so lifting may help maintain that power. “Very short, maybe 45 minutes, once a week, just to maintain. Weightlifting is still supplemental for your specific sport, so I don’t want it to affect my training on my bike or running. For race week, I don’t lift weights, because lifting weights takes time to recover.”

Keeping It Fun

“My trick to keep going — the best way to improve yourself,” Yuki adds, in a final reflection, “is to keep it fun. If you’re not having fun, I think that’s not good. Last year, I almost lost my motivation as an athlete. I almost thought about quitting racing, but I still love the sport. Trail running helped me mentally and physically, and my motivation came back, even for cycling. Having fun is the key to keep going.”

Ultra mountain athlete Yuki Ikeda with high-altitude researcher and writer Roberto Santos at Gonzo’s Coffee in Frisco after an insightful afternoon interview.

Thank you, Yuki. I completely agree. And best of luck with that 100-mile trail run at 13,000 ft.! Keep track of Yuki’s race schedule, social media and stats at http://yukiikeda.net/

robert-ebert-santos
Roberto Santos on an epic powder day at the opening of The Beavers lift at Arapahoe Basin ski area.

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

Athletes vs. Amateurs: Observations of an Altitude Expert

Ski America is a company that has organized accommodations and itinerary for international athletes and vacationers at ski areas around Colorado since 1988. The Omori family, Ski America’s founders, lead their clients on tours of Colorado’s most renowned mountains, including Aspen (8,040 ft.), Vail (8,120 ft.), Beaver Creek (8,100 ft.), Copper (9,712 ft.), Keystone (9,280 ft.), Breckenridge (9,600 ft.) and Arapahoe Basin (10,780 ft.).

Ryoko and Jimi Omori

Jimi Omori started Ski America as a tour operator for Japanese skiers and snowboarders. Ryoko joined in 2005, and now Ski America’s service is more than tour operating, assisting from first-time skiers of age 3 to professional racers. With over 30 years of experience guiding amateur skiers and international athletes alike, the Omori’s have made some fascinating observations of how people adjust to the high altitude environment of the Rocky Mountains.

The other day, Ryoko shared some of their valuable insight and experience with me over a cup of tea:

How long do your clients typically stay at altitude?

So we have two different kinds of customers. In November until early December, we have a lot of Japanese racers from Japan. They are high school kids, college students. They stay two to four weeks here, in Frisco or Copper Mountain. Then, from December to April, we have clients from Japan who stay in Vail or Aspen. Most of them are senior skiers, over 60 years old. They stay about a week in Vail or Aspen. Six nights is very average.

How often do you get repeat customers?

Quite a lot. Not all of them come back every year, but more than once. I would say, 70%.

Do you see new customers every year?

Yes.

How do you advertise in Japan?

Word of mouth.

How do you prepare your customers for the altitude?

When I set up the reservation for them, I send them the lodging confirmation and shuttle confirmation, how to get to the Colorado Mountain Express counter at Denver International Airport. With that information, I also send how to get ready for this altitude by e-mail to every customer: Don’t stay up all night before coming over here, don’t overwork before coming here, most importantly, don’t catch a cold before coming over here. That’s the most important thing. And keep yourself hydrated on the flight and on the shuttle. You can always stop at a restroom on the way from the airport to get here. Do not drink a lot [of alcohol] on the flight, and especially on the first night staying here. I encourage them to drink two liters of water a day.

They are so excited to be here, so they tend to forget about the altitude, because there are all the trees, it’s not above the tree line here. In Japan, [this elevation] is way over the tree line. So I always remind them, “You are going to be almost [at the elevation of] Mt. Fuji. So, move slow the first and second day of staying here.”

What about conditioning, physical exercise to prepare? Are they athletic?

They’re pretty much athletic. They’re avid skiers. They ski in Japan regularly. So I do not give them any athletic advice in Japan.

Do they come straight from Denver up to elevation, or do they stay in Denver a certain amount of time?

No. The flight arrives at 12:30 or 1 pm, so it’s very convenient for them to get on the shuttle in the afternoon, and they will be here before 5 or 6.

Do they ski the next day?

Most of them, yes.

What about oxygen or medication? Do you ever tell them to bring ibuprofen or anti-nausea medication?

No. But if anything happens here, I recommend taking [something] for a headache, like Advil.

What is the earliest sign that something might be wrong or that they need medical attention?

Headache. Or sometimes nausea. We had 150 racers last November, and out of 150, I took 5 kids to the clinic for altitude sickness symptoms.

Is it at the beginning of their stay?

Very beginning. [Typically] the second day of skiing. They are okay on the first day. They do not notice anything on the first morning, so they feel, “It’s okay, let’s go skiing!” and spend the day on the mountain, and they have jet-lag, and they can’t sleep well on the second night. And on the second morning most of them notice the symptoms. Those are the Copper clients. And I have 350 guests from Japan staying in Vail and Aspen. Last year, I didn’t see anyone get sick. So it’s only in Summit County, because it’s much higher.

Do you think there are any other correlating factors, like their age or where they’re from?

Age. The racers are from middle school to college, so they’re young. Their hormone level is not stable. And they are staying with their other teammates, apart from their parents, so it could have some emotional factors affecting them, too. But at the same time, the racers have a lot of muscle that needs a lot of oxygen. The higher metabolism that younger kids have [make them] more prone to high altitude sickness. The clients who stay in Vail or Aspen, they are much older, like, 40s, 50s, 60s. And they’re not as athletic as the racers. They do not do any training. So their basic metabolism is low, so I believe they do not need as much oxygen.

Does anyone come from a high elevation in Japan, or is it mostly sea level?

Mostly sea level. Only some of them are from Nozawa, it’s about 1000 m (3,280 ft.), so it’s much lower than Denver.

Nozawa, Japan

Is there a difference between the guests that come from Nozawa and the guests that come from sea level?

No. Whenever I see the doctor in the ER, or the Copper clinic, they always say it’s dehydration. No matter how much we tell them to keep hydrated, it’s not enough.

So what does the ER or clinic often give them besides fluids?

Oxygen. And they say it’s okay to take over-the-counter headache medication.

How long is their visit to the hospital? Is it just a couple hours, or do they stay overnight?

Just a couple of hours, or less than that.

Do they ski the next day?

Most of the time, the doctors say not to ski the next day. We carry a pulse oximeter in our office. We have 20 of them. We do not do this for the Vail clients, because they don’t get altitude sickness. So we only do this for the guests staying in Summit County. When we [check them in], we distribute pulse oximeters, one per room. We encourage them to measure [their oxygen level] every morning. Then, after the doctor’s visit, the doctors say it’s okay if your oxygen level is over 90%, 20 minutes after getting off oxygen.

What’s the lowest you’ve seen the oxygen level on any of your skiers?

38. [He was] 15. He was at the ER. He was transferred to Denver by ambulance. He was there about three nights, and he went back to Japan.

Was that the only time somebody had to go back to sea level?

Yes. But it sounds like he had a heart issue, which we didn’t know [about].

Have you witnessed any other factors that help them acclimate more effectively?

I encourage them to eat carbohydrates instead of getting a lot of oily foods. If you have a lot of french fries, it’s very oily, it will take more time and blood to get to the stomach. So the blood flow doesn’t go through the brain [well].

What about caffeine or other holistic remedies?

No. We have some repeating guests who had … symptoms in past years, and we encourage them to visit a doctor in Japan [who] can prescribe … Diamox. One of the ski coaches [from Japan] … has to be here with his team. He has no choice. And he’s [had] a lot of altitude sickness in the past. So we told him, “You should see a doctor and get Diamox prescribed, and start taking it before leaving Japan,” and it’s been working great.

A young skier shreds her way down a snowy back bowl on a powder day.

Is there a routine that your clients do to prevent feeling this sickness?

Just check blood oxygen level every morning.

Of the clients that come here regularly, do they acclimate quicker each time?

They learn. We always see lower numbers of altitude sickness patients, because they learn what they need to do, like drinking a lot of water and checking their blood oxygen level. And only the numbers can tell. Even if they feel good, if the numbers are bad, if they go skiing, they will have a problem. Especially for the young kids. They [don’t] trust what you say. As the years go by, the coaches will learn, and the kids will learn what they can and what they cannot do.

Is there anything different about the philosophy of treatment in Japan vs. the US?

You know what, we do not have altitude sickness in Japan. Only if you climb up Mt. Fuji, in one day, it could happen, but not everyone does that. The highest elevation of one ski area in Japan is about 2000 m (6,561 ft.). No one has experienced high altitude sickness in Japan.

When I climbed Mt. Fuji, I saw a lot of people with cans of oxygen that you can spray. Do you ever use or recommend that?

No. I don’t think it works. If you breathe it for five minutes, it will work for five minutes. So I guess it’s very effective if a ski racer uses it right before the start [of a race]. I believe some of our Vail clients [have seen] the bottle and have purchased it, but I’ve never heard anything about it, good or bad.

Smiles and high spirits all around

In closing, I asked Ryoko if she’d noticed a change in her own physiology since living at high altitude, to which she replied that she is always impressed by her increased stamina and speed when she steps on a treadmill back at sea level. I asked her if she ever experiences symptoms upon coming back to a high altitude from sea level. “No,” she says, laughing. She doesn’t typically engage in any strenuous activity the first day or two after travelling, “because I’m lazy,” she says.  

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

Genetics at Altitude: Should pregnant mothers or women who are hoping to conceive sleep on oxygen?

A child in my clinic had a small appendage in front of her ear, called a preauricular tag. I told the mother that I had just returned from a conference where I learned these are more common at high altitude. She replied, “But his father has one also.”

“Yes,” I explained, “There is an interaction between the genes and low oxygen.”     

Birth defects can be increased or decreased by the chronic hypoxia at high altitude. Geneticist Igor Salvatierra from the Hospital Materno-infantil discussed the interaction between oxygen levels and chromosomes at the Chronic Hypoxia conference in La Paz, Bolivia. He focused on a deformity we also see more commonly in Summit County, Colorado at 2800 meters: outer ear deformities – microtia.     Birth defects can be structural, like the outer ear, or functional, such as deafness, and occur in 1 out of 33 infants worldwide. Only 50% of abnormalities can be linked to a specific cause. Club foot is an example of a birth defect that is less common at higher elevations. In contrast, microtia is three times more common, with preauricular tags twice as common as at sea level. This is due to the interaction between genes and the environment.

Research has identified an enzyme called Jarid1B that is affected by hypoxia, including sleep apnea, copy number variation (CNV) and epigenetic factors such as stress and diet. These act on chromosome 1q32.1 to change the coding of proteins involved in the development of ear cartilage very early in fetal development.

At lower altitudes, the hypoxic environment can be caused by sleep apnea. In early pregnancy this could be one of many factors that, if added to the genetic predispostion, could cause a deformity in the fetus. Luckily the fetus is fully formed before the sleep difficulties in late pregnancy.

Should pregnant mothers or women who are hoping to conceive sleep on oxygen?

From what I learned in La Paz, not necessarily. There are factors in our low-oxygen environment that decrease our risk of other diseases.