A Summation of Wilderness Medical Society Clinical Practice Guidelines for Diabetes Management

According to recent research, nearly thirty million individuals in the United states have been diagnosed with diabetes. Due to this higher rate of prevalence, more people are aware of the basic information surrounding a diabetic diagnosis.  However, there are common misconceptions surrounding the average diabetic patient, with most information focused on the more common form of diabetes, type 2. Although the majority of diabetic patients in the United states do have type 2 diabetes, an estimated 5 to 10% of people with diabetes actually have type 1. Type 1 diabetes is an autoimmune disease in which the body’s own immune system destroys the cells in the pancreas that make insulin. Insulin is a very important hormone that enables sugar to enter the bloodstream in order for it to be used by the cells for energy, as well as stored for later use. Unlike type 2 diabetes, there is no cure for type 1 diabetes and the treatment options are limited; the only management for this form of diabetes is insulin therapy. The most common therapeutic regimens for type 1 diabetes includes constant monitoring of blood sugars using a glucometer or continuous glucose device. These devices combined with either syringes, preloaded insulin pens, and/or an insulin pump are the means to survival for type 1 diabetics. However, there have been many advancements in the ways physicians are able to help their type 1 diabetics control and manage their disease.  Because of this, type 1 diabetics are able to live their lives with far less complications.  When desired, type 1 diabetics are able to compete at high levels of activity and complete amazing feats, such as wilderness activities.

It is inspiring to know how type 1 diabetics are still able to perform in high intensity activities such as ultramarathons, ironmen/ironwomen, as well as professional sports, to name a few.  However, with such strenuous activity, it is important to note that diabetes control is more challenging.  Of note, it cannot be stressed enough, that baseline diabetic control is already challenging in itself.  By adding the addition of a strenuous environment and activity, diabetes control becomes more difficult as it is multifactorial.

To help address this issue, the Wilderness Medical Society (WMS) worked to form clinical practice guidelines for wilderness athletes with diabetes. The WMS gathered a group of experts in wilderness medicine endocrinology, primary care, and emergency medicine to compose these guidelines.  These guidelines are outlined for both type 1 and 2 diabetics who participate in mild-vigorous intensity events in wilderness environment with reduced medical access and altitudes greater than or equal to 8250ft; the objective to help individuals with diabetes better plan and execute their wilderness goals. The foundation summarizes their recommendations into pre-trip preparation, including a list of essential items to bring when on your wilderness trip, potential effects of high altitude on blood glucose control and diabetes management, and an organized algorithm to treat hyperglycemia and ketosis in the backcountry.

Effects of High Altitude on Diabetes Management:

At baseline, the various types of exercise activities are broken into aerobic, anaerobic, and high intensity exercise. Each type of exercise utilizes the energy stored in our bodies, in the form of sugar. In a healthy person without any comorbidities, during aerobic activities, glucose uptake into the large muscle groups is increased due to the increase in energy expenditure. To keep glucose higher during this form of exercise, insulin secretion is reduced. Simultaneously, other hormones such as adrenaline, cortisol, and glucagon are released into the system to promote further glucose release from processes such as gluconeogenesis and glycogenolysis.

Again, the body is utilizing its resource of glucose to move to the larger muscle groups to keep them moving and active. During anerobic and high intensity exercise, the same process occurs, but since these forms of exercise tend to be in short bursts, insulin levels tend to rise particularly in the post workout period.  This helps to diminish the effects of the counterregulatory hormones and keep blood sugar levels stable. If the athlete is unable to properly regulate insulin secretions during these various forms of exercise, then it is likely that he/she will experience frequent episodes of hyperglycemia. Also, due to the increase in insulin sensitivity in muscles post workouts lasting >60 min, hypoglycemia can also ensue.

In general, the WMS and other research demonstrates brief episodes of high intensity exercise are linked to hyperglycemia for diabetics. On the other hand, longer duration aerobic exercise will cause hypoglycemia. Unfortunately, due to the complex intricacies of glycemic control during exercise, in addition to the individuality of each patient and the multiple variables involved in each wilderness expedition (temperature, altitude, duration, etc.), the definitive guidance for adjustment of daily insulin continues to need refinement. This is why the WMS recommends extensive pre-trip planning with the various tools, research, and supplies that will be needed when planning any form of wilderness adventure.

Pre-trip Prep:

Like all endeavors, preparation is key in order to be better equipped to deal with the majority of future scenarios.  Planning is especially important when going on a wilderness expedition. Preparation becomes even more important with the diagnosis of diabetes. The WMS outlines the specific recommendations that should be included as a diabetic wilderness athlete. For example, pre-trip prep should generally include: (1) a medical screening, (2) research of the endeavor and how it may affect glucose management, and lastly (3) essential diabetes-specific medical supplies and backups.

Additionally, according to the American diabetes association, persons with diabetes should discuss with their primary care provider and or endocrinologist before a strenuous wilderness activity. This follow up ensures that athletes are up to date on their screenings, health maintenance labs, and prescriptions needed for therapy. Due to the various ways that diabetes can affect the body, the WMS also recommends that if a patient has cardiovascular involvement, retinopathy, neuropathy, or nephropathy, there should be a more extensive risk assessment by the provider. Although these complications are less commonly seen in high intensity wilderness athletes, adequate histories should be taken to avoid adverse circumstances.

As discussed earlier, altitude accompanied with increased strenuous exercise demands also has various effects on blood glucose management. As it pertains to altitude and blood sugar management in type 1 diabetes, multiple studies have shown an increase in insulin requirements at altitudes above 4000m (13,123′). At this time, researchers are unsure if this finding is due to the effects of acute mountain sickness or hypobaric hypoxia. Therefore, wilderness athletes with diabetes should be aware of the insulin resistance increase at these extreme altitudes.  In conjunction with altitude changes, as previously noted, the type of exercise will also play a role in insulin control.  Aerobic exercise for longer than 60 minutes can cause a hypoglycemic episode in type 1 diabetics due to the increased muscle sensitization to insulin. Therefore, at altitudes 4000m or above, wilderness athletes will be in a mixed long duration anaerobic/aerobic exercise. With the combination of these factors, there is a counter regulation effect, and the athlete becomes both more sensitive to insulin due to increase duration of exercise and less sensitive due to altitude demands. In order to better predict the effects of altitude combined with exercise, the WMS recommends close monitoring on shorter trips to recognize their specific glycemic trends prior to an extreme high-altitude expedition, as well as increased close monitoring of glucose management during their high-altitude endeavors.

Table 1: Environmental Effects on Diabetes, Imported from WMS

Lastly, in preparation of a high-altitude excursion, there are recommended items that should be packed for daily management of glucose, in addition to back up items to ensure athletes with diabetes aren’t left in a dangerous situation. Fortunately, the WMS was able to create a well-organized table on the recommended supplies.

Table 2: Medical Kit Preparation, Imported from WMS

Treatment of ketoacidosis or HHS:

To be properly prepared, an athlete should complete his/her own research on how changes of altitude and exercise can affect blood glucose management.  This includes complete pre-trip preparation and packing.  Once cleared, a diabetic athlete can finally head out on the high-altitude adventure. In case of emergency, a diabetic should be aware of the proper steps if he/she were to experience diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), or even acute mountain sickness (AMS). Hyperglycemia is described as a blood glucose greater than 250 mg/dL and without adequate treatment can lead to either DKA or HHS. Type 1 diabetics are more likely to go into DKA, while type 2 diabetics are more inclined to present in HHS. One of the most important indicators if a person were to be in DKA are ketones in blood or urine. This is why it is very important to make sure a wilderness athlete carries ketone strips in his/her emergency medical pack. Typically, if a patient finds ketones in their urine after using a ketone strip, then he/she is educated to seek emergent medical attention. When on a wilderness adventure, this can be a difficult task to accomplish. This is why the WMS also developed a flowchart in order to manage hyperglycemia and DKA without medical support. Refer to table 3 for their flowchart.

Table 3: Algorithm for management of hyperglycemia and ketosis in the backcountry. EDD, estimated daily dose, PO, oral intake, Imported from WMS

One issue that diabetics have when dealing with high-altitude is differentiating hypoglycemia and hyperglycemia side effects from AMS. The most reliable differentiating factor is increased blood sugar readings correlating with symptoms. WMS states that either a continuous glucose monitor or increased finger sticks for a higher frequency of blood sugar readings is important to determine if a person with diabetes is experiencing blood sugar complications of AMS. When discussing treatment of AMS in diabetics, the same methods are used as are recommended for a non-diabetic individual: Acetazolamide and dexamethasone in initial medical management. In regard to diabetes, it is important to discuss the potential additional side effects. Acetazolamide can worsen dehydration and acidosis if used at the wrong time. Dexamethasone is known to worsen blood glucose control. Both are still useful in acute mountain sickness but must be weighed against causing worsened complications.

Conclusion:

When participating in a wilderness adventure, individuals with diabetes will be prone to more medical side effects. Changes in altitude, along with the level of activity are known to affect diabetic control, so proper preparation prior to departure is required in order to ensure the health and safety of a diabetic wilderness athlete.  After being cleared by a medical professional and obtaining proper information, diabetics can plan to complete a wilderness adventure similar to that of a healthy individual with no comorbidities.  However, it is common for diabetics to experience hyperglycemia with high intensity activities and an increase in altitude. Therefore, diabetics (particularly type 1 diabetics), should be prepared with extra insulin to counteract elevated glucose levels. Alternatively, if a diabetic were to be at higher altitude with a longer duration of aerobic or anaerobic exercise, then he/she may be prone to hypoglycemia — lower blood sugar levels.  In either case, individuals with diabetes will need to monitor blood sugar levels more closely.  The WMS provides diabetics with an outline of recommended supplies that may be needed in the wilderness.  The outline also suggests for diabetics to bring ketone strips, as this is the most accurate measurement to determine if a diabetic is in DKA or HHS.  The ultimate goal of the WMS is to ensure the health and safety of diabetic athletes. Diabetes is a difficult disease to manage but becomes even more challenging when partaking in a wilderness adventure.

(All tables and figures imported from WMS)

References:

de Mol P, de Vries ST, de Koning EJ, Gans RO, Tack CJ, Bilo HJ. Increased insulin requirements during exercise at very high altitude in type 1 diabetes. Diabetes Care. 2011;34(3):591-595. doi:10.2337/dc10-2015

VanBaak KD, Nally LM, Finigan RT, et al. Wilderness Medical Society Clinical Practice Guidelines for Diabetes Management. Wilderness Environ Med. 2019;30(4S):S121-S140. doi:10.1016/j.wem.2019.10.003

Jonathan Edmunds is a second-year physician assistant student at RRCC PA Program in Arvada Colorado. Jonathan is a Colorado native, born and raised in Littleton, CO. He attended Colorado State University in Fort Collins, CO where he competed in Track and Field as a long jump/triple jumper, as well as earned his bachelor’s Biological Sciences. During his junior year in college, he was diagnosed with Type 1 diabetes and quickly became an advocate the support of diabetes education. After graduating in 2015, he focused his medical career aspirations on becoming a PA. He volunteered at Banner Fort Collins Medical Center and work at Bonfils Blood Center as a phlebotomist for 2 years before applying to PA school. In his free time, he enjoys coaching track and field at Littleton high school his alma mater, doing all things outdoors, and cozying up to his three “Irish” chihuahuas at home. 

Doc Talk: a Californian Interviews South America’s Altitude Experts Dr. Gustavo Zubieta-Calleja & Dr. Natalia Zubieta-Urioste

As a California native, I was unfamiliar with the impact high altitude had on the human body. I had only briefly learned about it in my exercise physiology course during my undergraduate studies. At best, I understood the difference between acclimation and acclimatization, and the advantages of living at high altitude for exercise performance. What I never really understood was how much all that information would mean to me when the next chapter in my life took me to Colorado.

In hindsight, I did everything against the book after moving to Colorado because I wanted to stay active and enjoy as much as I could before school started. I continued my daily workout routines, went whitewater rafting, and had a few drinks. More importantly, I was not hydrating adequately because I didn’t know you could drink straight from the tap. So… what happened? The end of my workout routines was met with dizziness and lightheadedness. On some occasions, I would notice my fingertips turn purple. My sleep would be interrupted by episodes of apnea. Though these symptoms did resolve eventually, they could have been prevented if I had followed a few simple rules.

As a student at Ebert Family Clinic in Frisco, CO at 9000′ alongside high altitude expert Dr. Christine Ebert-Santos, I had the opportunity to learn more about high altitude illness, interviewing Dr. Gustavo Zubieta-Calleja and his daughter Dr. Natalia Zubieta-Urioste from the High Altitude Pulmonary and Pathology Institute (IPPA) in La Paz, Bolivia. Dr. Zubieta has been practicing internal medicine and pulmonology at his father’s high altitude clinic since 1981. During our interview, we discussed their most recent publication Acute Mountain Sickness, High Altitude Pulmonary Edema, and High-Altitude Cerebral Edema: A view from the High Andes. When asked about what inspired him to follow his father’s footsteps, he replied, “My father created the first high altitude clinic in the world and that was a great inspiration to me. He did it with a visionary idea because at the time in 1970, nobody thought about putting a clinic like that out. I was born at home because my father was a physician and he preferred to deliver us. We [me and my siblings] were all delivered at home and then that home became the clinic in 1970. The clinic turned 50 this past year and our father also became our mentor at this clinic.”

The article addresses the two types of adaptation: genetic and physiologic. In his publication, he primarily addresses the physiologic mechanisms that must occur for one to adapt to the hypobaric environment that is high altitude. During my research, however, I found that Tibetans experienced the fastest phenotypically observable evolution in human history partially because their community has spent centuries living at that altitude. When I discussed my findings with Dr. Zubieta, he stated that much still needs to be done to determine if the Andean population has made similar genetic adaptations. He was optimistic about the studies to come as he strongly believes that all organisms must adapt if they want to survive and reproduce at high altitude. According to Dr. Zubieta, change is inevitable. He believes that the energy expenditure from the body’s initial response to the hypobaric environment is too costly forcing  the human body to adapt in a manner that will render it more effective in managing this energy expenditure via metabolism at the mitochondrial level.

We also discussed the different attitudes towards the use of acetazolamide, or Diamox. In the United States, acetazolamide is a diuretic commonly used to prevent the onset of acute mountain sickness. Dr. Ebert Santos highly recommends the use of acetazolamide to prevent acute mountain sickness while Dr. Zubieta and other providers reluctantly use it due to the risk of dehydration. A 125-milligram dose is adequate and unlikely to cause side effects, which Dr. Zubieta said can include fatigue, nausea, vomiting, abdominal pain, and diarrhea. (Most visitors to Colorado taking acetazolamide only experience tingling of the hands and feet and a flat taste to carbonated beverages.) Dr. Zubieta justifies his avoidance of acetazolamide as an “opportunity” to treat the patient’s underlying issues, stating that ascension to high altitude is a testament of one’s cardiovascular fitness and the use of acetazolamide compromises adaptation to high altitude. At the IPPA they have uncovered underlying conditions that explain their patients’ symptoms at altitude and resulted in better health upon returning to sea level.

 The Wilderness Medical Society has established a risk stratification for acute mountain sickness which further supports Dr. Zubieta’s infrequent use of acetazolamide. The society’s 2019 guidelines suggest that individuals with no history of altitude illness and ascending to an elevation no greater than 2,800 meters, and individuals who take more than two days to arrive at an altitude between 2,500 and 3,000 meters are considered low risk and the use of acetazolamide is not recommended. Instead, Dr. Zubieta recommends Ibuprofen and Acetaminophen for headache relief and oxygen in those with persistent symptoms of acute mountain sickness. He also emphasizes that oral hydration can be important in preventing high altitude illnesses.

Overall, Dr. Zubieta’s perspective on high altitude is fascinating. During my master’s program, I learned a systematic way to treat patients using guidelines or criteria backed by years of evidence that helps you, the provider, make an informed decision on a patient’s particular case. Dr. Zubieta reinforced the importance of treating each patient’s case individually to determine the underlying cause, rather than suggesting acetazolamide to everyone who doesn’t want to deal with acute mountain sickness. As for myself, seeing how physicians in other countries approach certain illnesses has definitely made me think twice about how to approach high altitude illness.

To learn more about Dr. Gustavo Zubieta and his clinic, you can visit his website at: https://altitudeclinic.com/

Born and raised in Northern Orange County of California, Michael Le is a second-year physician assistant student at the Red Rocks Community College Physician Assistant Program in Arvada, CO. Michael attended California State Polytechnic University Pomona otherwise known locally as Cal Poly Pomona where he earned his bachelor’s degree in Kinesiology. Shortly after, he worked as an EMT for Lifeline Ambulance, and physical therapy aide and post-anesthesia care unit technician at Fountain Valley Regional Hospital in Fountain Valley, CA. In his free time, Michael likes to cook and breed show rabbits.