COVID in Colorado Update: Reasons high altitude residents may be less susceptible

Last week we were privileged to have a Zoom discussion with two high altitude experts from the Instituto Pulmonar Y Patologia de la Altura (IPPA) founded in La Paz,  Bolivia in 1970. Dr Gustavo Zubieta-Calleja and Dr. Natalia Zubieta-DeUrioste answered our questions about their recently published article, Does the Pathogenesis of SAR-CoV-2 Virus Decrease at High Altitude?. They and the seven  coauthors presented data comparing COVID cases in high altitude areas of China, Bolivia and Ecuador showing a marked reduction in numbers compared to low altitude areas in the same countries, with dramatic, colorful topographic maps.

Drs. Zubieta-Calleja and Zubieta-DeUrioste and their colleagues theorized four reasons why altitudes above 2500 m could reduce the severity of the corona virus. (Note: Frisco, CO is at 2800 m, Vail 2500 m). As described in their previous paper published in March, the intense UV radiation at altitude as well as the dry environment likely reduce the viability of the virus in the air and on surfaces.

Dr. Zubieta-Calleja on a Zoom chat with Dr. Chris explaining a chart comparing UV exposure in La Paz, Bolivia (top line) and Copenhagen, Denmark (bottom line).
Dr. Chris with Dr. Gustavo Zubieta-Calleja and other altitude experts from the Hypoxia Conference in La Paz on the Camino Chacaltaya, which reaches an elevation of 17,785’/5421 m.

The low barometric pressure causes air particles to be spaced more widely, which would also decrease the viral particles inspired with each breath, reducing the severity and frequency of infections.

Furthermore, residents accustomed to chronic hypoxia may express reduced levels of angiotensin converting enzyme 2 (ACE2) in their lungs and other tissues. This enzyme has been found to be the entry path for the corona virus into cells where it replicates. Finally, the normal adaptation and acclimatization of populations with prolonged residence above 2500 meters may reduce the severity of the disease in individuals, and reduce mortality. This includes increased ventilation, improved arterial oxygen transport, and higher tissue oxygenation mediated by increased red blood cells produced under the influence of erythropoietin, which could be explored as a possible therapy.

Dr. Zubieta-Calleja with statistics reflecting the number of COVID-19 infections at different elevations in Bolivia. Note the most infections occur at a lower elevation.

As we stated in our interview quoted in the Summit Daily News March 17th, none of these factors can be relied upon to protect every individual. Therefore it is important to continue frequent hand washing, wearing masks, social distancing, and avoid touching your face.

COVID in the Mountains: What are the Risky Situations to Avoid as We Start Leaving Our Homes?

We are on the back slope of the epidemic, according to University of Massachusetts Dartmouth Professor of Biology Erin S. Bromage, Ph.D. He explains what to expect and where not to go in an article this week which was cited in the New York Times: The Risks-Know Them-Avoid Them. The bad news is that the back slope can have as many deaths as the upslope.

The good news is that you don’t get COVID outdoors, as long as you are not standing close to someone who might have the virus for a period of time, perhaps over ten minutes. Bromage reviews a series of epidemiologic studies tracing the spread of the disease in situations including standing outside talking to someone (one case), church choir practice (45 of 60 infected, 2 died), indoor sports, specifically a curling tournament in Canada where 24 of 72 attendees became ill, birthday parties and funerals (high rate of infection and many deaths related to hugging, kissing and sharing food), grocery stores (safe for shoppers but employees get infected), and restaurants (50% infection rate after sharing a meal with nine at the table). He also reported details about the spread of disease at meat packing plants, a call center and a medical conference.

The risk of infection increases with exposure to a larger number of virus particles over a longer period of time in a smaller space with poor air flow. This is why shopping and outdoor activities are not likely to be dangerous. Breathing releases a small number of virus, between 50-5000 droplets per breath. Talking expels more and  singing is definitely a means of spreading virus. A single cough releases 3000 droplets traveling 50 miles per hour, mostly falling rapidly to the ground. In contrast a sneeze may release 30,000 droplets at 200 MPH, many of which are smaller and stay in the air longer.

Dr. Bromage writes that 44% of infections come from people who have no symptoms at the time.  The virus can be shed up to five days before a person becomes ill. Most people contract COVID from a family member who brings it home. Children are three times less likely to become ill but three times more likely to spread the virus.

I wondered if the lower barometric pressure at altitude could cause viral particles to be less compact. I called Peter Hackett, MD of the Hypoxia Institute in Telluride and he agreed that theoretically the less dense air would not carry as many particles. We also discussed antibody tests, which are still experimental, not recommended and difficult to interpret. The population screened in Telluride showed a 0.5% positive rate, but when a disease has a low prevalence there are more false positives. They did blood tests on some 5,000 people early in the outbreak. They were not able to repeat the serology due to staffing problems at the lab where many technicians contracted the illness.

My advice is to wear masks anytime you are out of the house, except if you are biking, hiking, running where the viral particles will be dissipated rapidly. Wearing a mask during these activities is still a kind gesture  to reduce the anxiety of others. Continue with frequent hand washing, avoid touching your face, practice social distancing, and when the churches reopen we should hum instead of sing.