Category Archives: Wildlife

Of Mice & Men at Altitude: This Podcast Will Kill You, Episode 115 “Altitude Sickness: Balloons, though?’

This comprehensive review of the biology, history and physiology of high elevation starts with a fatal hot air balloon ride that happened in 1875. The passengers went past 8,000 meters, or over 26,000 feet and lost consciousness. The balloon failed and fell to the ground but not until after the altitude related hypoxia killed two out of the three passengers. Currently the legal limit in many parts of the world for how high a hot air balloon can fly is around 3,000 feet.

The pressure the atmosphere exerts on our bodies, the barometric pressure, that is the pressure of all gasses including oxygen, decreases as we go higher in altitude. As seen in the graph below, the higher you go, the less barometric pressure. This leads to a decrease in the partial pressure of oxygen. The percentage of air that contains oxygen is 21% at any height. However, the oxygen molecules are less dense higher up so with every breath our bloodstream gets less oxygen which is called hypoxemia. Our tissues then get less oxygen as well which is called hypoxia.

Our bodies go through a process called acclimatization to help us adjust to these changes at altitude. The first change we see is increased ventilation. The decrease in oxygen stimulates chemoreceptors in our aorta and carotid which then regulate the depth and rate of our breathing, making our breaths deeper and faster to try and get more oxygen in. This involuntary action is called the hypoxic ventilatory response (HVR). There is an inverse relationship between carbon dioxide and oxygen in the alveoli of our lungs. Since we breathe deeper and faster at altitude we breathe out more carbon dioxide, hence increasing the partial pressure of oxygen. Discussions about carbon dioxide, how it affects the kidneys, what happens to hemoglobin, cardiac output, are very helpful for a deeper understanding of what happens in the body at altitude.

There are three major illnesses that can occur when our bodies do not go through acclimatization properly: acute mountain sickness (AMS), high altitude cerebral edema (HACE), and high altitude pulmonary edema (HAPE). AMS is the most common. It is seen within 4-12 hours of ascending to altitudes higher than 2500 meters. A headache is needed to diagnose AMS in most scoring systems used for diagnosis, other symptoms include GI symptoms, dizziness, fatigue, and sleep disturbances. HACE is a progression of these symptoms. It is dangerous since as the name implies it is cerebral edema or swelling. There may be signs of altered mental status, ataxia, and can progress to coma and death within 24 hours. According to the blog there is not much understanding/consensus of which part of the acclimatization process goes wrong to cause these potentially fatal  outcomes, nor is there a clear answer about whether you can have one without the other. The onset of HAPE is slower, occurring between 1-5 days, rarely after a week. There are more pulmonary symptoms as the name suggests such as excessive shortness of breath, chest tightness, cough, sputum production. The podcast discusses in detail theories about the causes of HAPE.

The history of altitude sickness goes back to Ancient Chinese, Greek and Roman medical texts. “The ancients also observed that the rarity of the air on the summit of Olympus was such that those who ascended it were obligated to carry sponges moistened with vinegar and water and to apply them now and then to their nostrils as the air was not dense enough for their respiration.” This suggested they believed there was no water vapor in the air at high altitudes making it difficult to breathe. Some other texts mentioned “headache mountains” suggesting the naming of mountains based on side effects they experienced at these high altitudes.

The podcast hosts reviewed landmark experiments showing the effects of hypoxia on people and animals. Robert Boyle and Robert Hooke’s experiments using an air pump to investigate an animal’s response to different air pressures. Results showed that survival was shortened at lower pressures. Hook also created a decompression chamber so humans could test low pressure effects. He personally sat in there for 15 minutes at 570 torr, the equivalent of 7,800 ft (2400 m), and experienced some hearing loss. Anton Lavoisier performed another experiment, he compared blood that passed through the lungs with fresh air with venous blood. Freshly ventilated blood was bright red and venous blood was darker red, suggesting something changes in our blood when having contact with fresh air. Another scientist, Mayow, put a mouse on a stool inside of a bowl of water then covered it with a glass bell, creating a sealed environment. The same thing was done with a candle.

Results were that the water levels inside the bell rose as the animal breathed or as the candle burned, suggesting the mouse or the flame was consuming some part of the air which the water came in to fill. He demonstrated there must be at least two different components in air, one of them being necessary for both animal respiration and combustion. Later on he also suggested this “component” is taken up by the lungs and passed into the blood where it is involved during heat production and muscle movement, explaining why breathing increases during exercise, as we need more of this substance in the air to move.

Mountaineering and hot air balloons led to further understanding during the 1700 and 1800s. Paul Bert used animals in hypobaric chambers, simulating the low pressure of high altitude. He found that illness and death always occurred at a certain level of blood oxygen. The same thing happened when air pressure was kept at sea level but the overall oxygen concentration was lowered. Bert also suspected that people and animals at high altitude produce more red blood cells for increased oxygen absorption. Now we know this is true. Plasma volume drops 15-25% which causes a rise in the concentration of hemoglobin. This occurs within around 1-2 days of ascent to altitude. This triggers erythropoietin which stimulates red blood cell production. However, this occurs over days or weeks. So if you are at high altitude for less time your body will not get to this step. (Read “Red Flags At Altitude blog about lab values seen in the patient portal).

To understand altitude effects many researchers now study small animals.  The highest mammal is the yellow-rumped leaf-eared mouse, at 21,000 ft, studied by Jay Storz and colleagues. North American deer mice are the only mammals above tree line in the Rocky Mountains.  University of Denver Assistant Professor of Biology Jon Velotta does studies comparing these high dwellers to their lower altitude cousins. With colleagues Catie Ivy andGraham Scott they were able to show that the breathing rate, red blood cells and hemoglobin increase proportionately to decreasing partial pressures of oxygen.

Anyone interested in the nitty gritty of altitude will learn from this podcast, as well as many other medical topics covered by Colorado-based hosts Erin Allmann Updike MD, PhD and epidemiologist and Erin Welsh PhD disease ecologist and epidemiologist.  Each podcast is accompanied by original recipes for a themed cocktail and nonalcoholic drink.

Claudia Ismerai Reyes is a PA student at Red Rocks Community College in Arvada, Colorado. She grew up in Phoenix, Arizona and went to Arizona State University to get her bachelor’s degree in biology. The first in her family to graduate college. She moved to Colorado a little over five years ago and worked as a CNA at Denver Health for over two years before getting into PA school. In her free time, she likes to watch movies with her husband, trying new places to eat, or playing board games at home. 

Lost, Stranded, and Hungry in the Mountains of Western Colorado? A Mini Guide to Edible Plants

From backpacking and camping to skiing and snowboarding, there are plenty of activities outdoors in the Colorado high country. If you find yourself wandering around and lost without food in the mountains, there are several wild plants that you can eat. 

However, before you consume the delectable greens, there are a few precautions to take.

Moose shopping
  • Do not eat any wild plants unless you can positively identify them. There are iOS and Android apps that you can download prior to your hike to help distinguish plants, such as PictureThis and NatureID. 
  • Be aware of environmental factors such as pollution or animal waste. Avoid popular wild animal gathering areas.
  • Make sure you’re not allergic to the plant by rubbing it against your skin and observing for a reaction. If so, do not eat the plant. Before ingesting a large quantity, eat a small amount and check for a reaction. 

It may be difficult to cook if you did not come prepared with a portable stove, pots, and water, which could limit ways to enjoy vegetation. Here is a list of edible plants, how to identify them, where can they be found, and which part you can eat.

Wild plants

Dandelions (Taraxacum officinale): yellow ray florets that spread outward from center with toothy, deep-notched, hairless basal leaves and hollow stems. They can be found everywhere and anywhere. Every part of the dandelion plant is edible including the leaves and roots.

Yellow-green hemispheres bud in a bunch from green stems with pine needle-like leaves.

Pineapple Weed/ Wild Chamomile (Matricaria discoidea): the flower heads are cone-shaped and yellowish-green and do not have petals. Often found near walking paths and roadsides, harvest away from disturbed, polluted areas. If you’re feeling anxious about being lost, pineapple weed promotes  relaxation and sleep and serves as a  digestive aid.

Fireweed (Epilobium angustifolium): vibrant fuchsia flowers. Grows in disturbed areas and near recent burn zones. Eat the leaves when they are young as  adult leaves can stupefy you. Young shoot tips and roots are also edible. 

Wild onions (Allium cernuum): look for pink, lavender to white flowers with a strong scent of onion. They grow in the subalpine terrain and are found on moist hillsides and meadows. Caution: do not confuse with death camas. If it doesn’t smell like an onion and has pink flowers, it is not likely an onion.

Cattails (Typha latifolia or Typha angustifolia): typically 5-10 feet tall. Mature flower stalks resemble the tail of a cat. Grow by creek, river, ponds, and lakes. This whole plant is edible, from the top to the roots. Select from pollution-free areas as it is known to absorb toxins in the surrounding water.

Wild berries:

Wild strawberries (Fragaria virginiana): they are tiny compared to  store-bought. Can be identified by their blue-green leaves; small cluster of white flowers with a yellow center; and slightly hairy, long and slender red stems.

Huckleberries (Vaccinium spp): They grow in the high mountain acidic soil and flourish in the forest grounds underneath small, oval-shaped, pointed leaves. They resemble blueberries and have a distinguishable “crown” structure at the bottom of the berry. They can be red, maroon, dark blue, powder-blue, or purple-blue to almost black, and they range from translucent to opaque.

Deep blue berries stand out against bright red and green, waxy leaves.

Oregon grapes (Mahonia aquifolium): powder-blue berries, resembling juniper berries or blueberries, with spiny leaves similar to hollies that may have reddish tints.

Fun fact: The roots and bark of the plant contain a compound called berberine. Berberine has antimicrobial, antiviral, antifungal, and antibiotic properties.

Mushrooms

Brown whole and halved mushrooms lie on a green table with ridged, sponge-looking caps.

True morels (Morchella spp.): cone-shaped top with lots of deep crevices resembling a sponge. They will be hollow inside. A false morel will have a similar appearance on the outside but will not be hollow on the inside and are toxic. Morels are commonly found at the edge of forested areas where ash, aspen, elm, and oak trees live. Dead trees (forest wildfires) and old apple orchards are prime spots for morels.

Short, stubby mushrooms with white stems and brown camps stand in a row growing over grass.

Porcini (Boletus edulis): brown-capped mushrooms with thick, white stalks. Found at  high elevations of 10,500 and 11,200 ft in  areas with monsoon rains and sustained summer heat.

There are many more edible plants, flowers, berries, and mushrooms in the mountains. These are just 10 that can be easily identifiable and common in the Western Colorado landscapes. I recommend trying out the apps listed above and reading “Wild Edible Plants of Colorado” by Charles W. Kane, which includes 58 plants from various regions, each with details of use and preparation. Hopefully this post made you feel more prepared for your next adventure. 

Resources:

Davis, E., 2022. Fall plant tour: Frisco, CO | Wild Food Girl. [online] Wildfoodgirl.com. Available at: <https://wildfoodgirl.com/2012/eleven-edible-wild-plants-from-frisco-trailhead/> [Accessed 10 July 2022].

McGuire, P., 2022. 8 Delicious Foods to Forage in Colorado | Wild Berries…. [online] Uncovercolorado.com. Available at: <https://www.uncovercolorado.com/foraging-for-food-in-colorado/> [Accessed 10 July2022].

Rmhp.org. 2022. Edible Plants On The Western Slope | RMHP Blog. [online] Available at: <https://www.rmhp.org/blog/2020/march/foraging-for-edible-plants> [Accessed 10 July 2022].

Lifescapecolorado.com. 2022. [online] Available at: <https://lifescapecolorado.com/2014/01/edible-plants-of-colorado/> [Accessed 10 July 2022].

Pfaf.org. 2022. Plant Search Result. [online] Available at: <https://pfaf.org/user/DatabaseSearhResult.aspx> [Accessed 10 July 2022].

Cindy Hinh is a second-year Physician Assistant student at Red Rocks Community College in Arvada, CO. She grew up in southern Louisiana and received her undergraduate degree in Biology from Louisiana State University. Prior to PA school, she was a medical scribe in the emergency department and an urgent care tech. In her free time, she enjoys baking, cooking, going on food adventures, hiking, and spending time with family and friends.

WMS Blog Entry No. 4, Part I: Tick Bite Prevention and Proper Removal

Ticks are blood feeding parasites. Ticks are known as vectors because they can transmit different pathogens responsible for several diseases including Colorado Tick Fever, Rocky Mountain Spotted Fever (RMSF), Tularemia and relapsing fever. While there are 27 species of ticks in Colorado, almost all human encounters w/ ticks in Colorado involve the Rocky Mountain wood tick, a tick that only lives in the western U.S. and southern Canada at elevations between 4,000 and 10,000 feet. Another highly prevalent tick is the brown dog tick which is specific to dogs.

Before you go out!

DO:

  • Wear protective clothing! Wearing long sleeved shirts, long pants tucked into your socks and close toed shoes can keep ticks from getting onto your skin, as ticks are usually acquired while brushing against low vegetation.
    • wear light colored clothing, as this makes it easier to find ticks that have been picked up
    • Treat clothing w/ permethrin as this can help kill or repel ticks for days to weeks! Do not apply directly to skin.
  • Use Tick repellent. This includes the well-known DEET along with picaridin, IR3535 and oil of lemon eucalyptus
    • Repellent can be applied either directly to skin or to clothing, AND is most effective if applied to the lower body that is likely to come in contact with ticks first!
    • If applying repellents to skin:
      • DO NOT use high concentration formulas on children (DEET concentration > 30)
      • AVOID applying repellents to your hands or other areas that may come in contact with your mouth
      • DO NOT put repellent on wounds
      • ALWAYS wash skin that has had repellent on it.
  • Remember: Dogs can get ticks too! Don’t forget to consult your veterinarian about how to protect your furry friends against ticks.

When you go out: DO NOT assume that you won’t get bit.

  • Avoid tick habitat
    • Ticks are most active in spring and early summer and are concentrated where animal hosts most commonly travel, including areas of brush along field and woodland edges or commonly traveled animal host paths though grassy areas.
      • DO try to avoid exposure in these areas by staying in the center of marked trails when hiking to avoid brushing vegetation that ticks may be perched on waiting for you!
    • If possible, avoid these sites during tick season.
    • If you live in known tick territory, you may even get a tick bite in your own backyard! Decrease this risk by creating a tick-free zone around your house by keeping your lawn mowed, eliminating rodent habitats (wood or rock piles) around your house, and placing wood chips between your lawn and tall grasses or woods.

After coming back inside

  • Perform a tick check which includes botha visual and physical inspection of your entire body, as well as your gear and pets. Because ticks take several hours to settle and begin feeding, you have time to detect and remove them. You tend to not feel ticks because their saliva has histamine suppression and analgesic effects. Ticks like warm, moist and dark areas but can latch anywhere.
    • Examine your scalp, ears, underarms, in and around the belly button, around the waist, groin/pubic area, buttocks and behind your knees.
    • If camping, perform tick checks daily on humans AND pets, making sure to examine children at least twice daily. Again, pay special attention to the head and neck and don’t forget to check clothing for crawling ticks.
    • Shower and wash your clothes after returning home from the outdoors.

If you or a family member get bit by a tick: DO NOT PANIC, and DO NOT immediately rush to the emergency room! If the tick has been attached for less than a day, the chance of the tick transmitting one of these diseases is low. Removing ticks can be tricky, as they use their mouthparts to firmly attach to the skin.

Best method for tick removal -> remove as quickly as possible!

1. Grasp the tick with fine tipped tweezers as close to the skin as possible. If tweezers are not available, use a rubber gloved hand or place tissue or thin plastic over the tick before removing it to avoid possible transmission of disease.

2. Pull tick SLOWLY and with STEADY PRESSURE STRAIGHT away from the skin

  • DO NOT:
    • Crush, puncture, twist or jerk the tick as you remove it. This may increase risk of the tick regurgitating infected body fluids into the skin or leaving mouthparts in skin

3. After the tick is removed, disinfectant the attachment site on skin and WASH YOUR HANDS. Dispose of the live tick by placing in a sealed bag/container and submersing it in alcohol, then wrapping it tightly and crushing it in duct tape, OR flushing it down the toilet.

  • DO NOT:
    • crush the tick in your fingers
    • try to suffocate the tick still on the person by covering it with petroleum jelly OR touching it with a hot match to suffocate -> these methods can cause the tick to burst and INCREASE time the tick is attached, as well as making the tick more difficult to grasp

Remember: the goal is to remove the tick quickly from the host as opposed to waiting for it to detach on its own.

If you remove the tick and are worried, you can always put the tick in a sealed container with alcohol and bring the dead tick to your medical provider.

If you develop a rash or flu-like symptoms (fever, fatigue, body aches, headache) within several weeks of removing tick, see your medical provider and tell him/her about the recent tick bite, when it occurred and where you acquired the tick.

Remember: These diseases are very treatable if caught early enough!

Graphic taken from https://www.cdc.gov/ticks/pdfs/FS_TickBite-508.pdf

Stay tuned for next month’s explanation of the tick life cycle and tick-borne diseases in the high country!

References

1. Colorado Tick and Tick Born Diseases fact sheet. https://extension.colostate.edu/topic-areas/insects/colorado-ticks-and-tick-borne-diseases-5-593/ Accessed on 8/8/20

2. Peterson J., Robinson Howe. P. Lyme Disease: An Uptick in Cases for 2017. Wilderness Medicine Magazine: https://www.wms.org/magazine/1213/Lyme-Disease. Accessed 8/8/20

3. Do’s and Don’t’s of Tick Time: https://awls.org/wilderness-medicine-case-studies/dos-and-donts-of-tick-time/ Accessed 8/8/20

Laurie Pinkerton is a 3rd year Physician Assistant Student studying at Drexel University in Philadelphia, PA. Originally from Northern, VA, she graduated from the University of Mary Washington in Fredericksburg, VA with a degree in Biology in 2014. She moved to Keystone to live that ski life and stayed for 2 years, working as a pharmacy tech at Prescription Alternatives and as a medical assistant at Summit Cardiology. Prior to starting PA school, she moved to Idaho where she learned about organic farming and alternative medicine.  She has loved every second of being back in Summit County and learning here at Ebert Family Practice. She looks forward to practicing Integrative Medicine in the near future.

Section House in December: Moose Country

Section House sits at 11,481′ (3499 m), on Boreas Pass, just south of Breckenridge, Colorado. It isn’t the highest hut in the Summit Huts system, but its unique location and history is what makes it one of the most challenging.

Many of the huts in the Summit and 10th Mountain Division systems sit on a hillside, below tree line, which provides a significant amount of weather mitigation. Section House is right at the tree line, on the pass, which means any wind and weather will likely be funneled right into you. And because you are in one of the highest counties in the United States, weather is highly variable.

I’ve done this hut in a blizzard before, arriving to find the padlock on the front door was frozen shut. That may have been the most I’d ever despaired in my life up until then.

Even in great weather, however, the temperature alone is a liability. When we set out from the trailhead this time, it was sunny and relatively balmy for December, in the 30’s (Fahrenheit). But the temperature in the shade can be several degrees lower, and as the sun sets below the Ten Mile Range, the temperature starts to drop by the tens of degrees really quickly.

The Stats

Distance: a little over 6 miles; GPS and some maps may differ by tenths of a mile. If you tell your friends 6, they may resent you.

Timing: the same hike has taken me a couple hours with no weight on my back besides water, on well-packed snow. This time, it took over an hour a mile, including frequent breaks, thanks to all the weight I was carrying and pulling. Additionally, we constantly had to redistribute weight among sleds and backpacks to relieve shoulders and keep sleds from tipping over. If you decide to pull a sled, keep the weight low and as evenly distributed as possible. The other very limiting factor was the last half of the trail was covered in at least a couple feet of unpacked, fresh powder. Our lead was breaking trail in snowshoes.

While the grade going back down to the trailhead isn’t steep enough to keep momentum without skating, it is significantly easier and faster, and took us half the time even after waiting for moose to safely cross our path.

Elevation gain: about 1100′.

Capacity: 12 people.

Packing

I’ve pulled a sled both times I’ve done this hut. I don’t regret it, but it is challenging at best in calm weather. Unless you are going for more than a couple nights, I’d recommend packing everything into a backpack.

Because the elevation gain is so gradual, the challenge with weight is the distance. Pack your weight so it will still be comfortable on your shoulders after three miles. The advantage of pulling a sled was having less weight on my shoulders, but after several miles, even minimal weight can dig into your muscles.

The only source of water around this hut is the snow you melt, which is why it isn’t open in the Summer season. Water purifying filters are the quickest way to refill all your containers at the hut, but you will want plenty of water for the hike in alone. Running out of water on the trail is dangerous. An added risk: when the sun went down on us after the first three hours in, the water in our CamelBak nozzles started freezing if we weren’t regularly sipping on them.

Bring a sleeping bag. Most huts I’ve been to have blankets and pillows on the mattresses, but this one does not. This is also one of the oldest and coldest cabins; built in 1882, it takes hours to heat up by wood stove, especially if no one has been in it recently.

Moose

Now forget all the advice I just gave you and center your whole packing strategy around how you plan to evade a charging moose.

This region is moose country: high, high meadows filled with willowy wetlands. They don’t care how cold it is. In the dead of night, one of us opened the front door to use the outhouse and a young bull was standing right in front. On the trail back, two different parties ran into a moose and her calf right on the trail. They are not in the way. You are on their trail.

But seriously, pack to be prepared for your comfort and sustenance on the trail and at the hut. The only thing you can do about the moose is give them a lot of space while avoiding any confrontational, jerky movements that may suggest any predatory intent. If moose perceive a threat, they are liable to charge, male or female. If they charge, drop everything weighing you down and pray-run (praying while running).

When we ran into the moose on the trail, we stayed over 50 meters away and just waited while the moose wandered further off our path. As soon as they were about 50 meters off our path, we proceeded with caution. But we waited for over 30 minutes, and would have waited longer if we needed to.

Skis vs. Skins vs. Snowshoes

This was the most highly contested logistical conversation among our party. In the end, four of us were on cross country skis (without skins), one was on skis with skins, one was on a split-board with skins, and one was on snowshoes.

This really depends on the conditions. Two weeks prior, three of us hiked the trail in boots, on well-packed snow after days of warm, dry weather. Days before we left for the trip, however, a series of storms blew several feet of snow in, which changed everything. Boots alone were definitely not an option.

Most people, who aren’t hiking to the hut, will stop and turn around at the halfway mark where historical Baker’s Tank stands. This means the trail up until that point will reliably be pretty packed down. Because of the recent snow, however, no one could be sure what conditions would be like for the second half of the trail.

Freshly-broken trail through fresh snow past the midway point to Section House.

Sure enough, Baker’s Tank to the hut was unbroken trail through deep, soft snow. Our lead, on snowshoes, was cursing all the way to the hut as he carved the path for the rest of us. But in deep snow, snowshoes are sometimes the most comfortable option for an ascent, especially if you are inexperienced on skis and skins.

The advantage to skinning up on a split-board or downhill skis is the width of the blades. They are wider than cross country skis, which makes balancing the extra weight more comfortable and stable.

On a packed track, cross country skis were relatively comfortable, if narrow. The boots are more similar to normal footwear, so are more flexible and comfortable than ski or snowboard boots. Price was also a determining factor: renting skis or a split-board can cost upwards of $45 per day at most rental shops. We found cross country skis for $10 per day at Wild Ernest Sports, above Silverthorne, and they worked well. One thing about cross country ski boots, however, is that they aren’t as well-insulated as downhill ski or snowboard boots. Trekking through deep snow in them requires much better waterproofing and insulation than we were prepared with.

Jupiter rising in the dusk on the way up to Section House.

As for skins, although the trail grade is very gradual, there is enough of a grade at times that you will be thankful for the traction that skins provide. So unless you’re on cross country blades, you’ll want some skins.

Altitude & Acclimatization

One advantage of carrying all the weight we did was that it forced us to make a slower ascent and take frequent breaks. These are two things you can do to minimize the affects of the altitude on any ascent. In our party, all but one of us have lived at an altitude over 7,000′ for at least one year. Most of us have lived over 9,000′ for several years. But this was the first hut trip over 10,000′ for three of us, one of whom flew in two days before from sea level.

Fortunately, no one in the group experienced any severe symptoms of acute mountain illness, and I credit that to our meticulous supervision of each person’s blood oxygen saturation as well as our slow ascent. The first night we were at the hut, the lowest oxygen saturation we saw was 85%, but most were between 85 and 90%, which, at over 11,000′ is not surprising. If some slow, deep breaths hadn’t brought oxygen levels up, I would have been more concerned.

Hitting kickers behind Section House.

As seems to be tradition on our expeditions, we arrived well after dark. But these days, sunset is at 4:30 pm. Luckily, the weather was calm, and the trail is quite obvious. Our biggest concern after dark was the tremendous drop in temperature. With no cloud cover and a recent cold front, it was well below freezing, and the only thing that kept us from freezing was the constant movement, which kept us progressing forward.

Ken’s Hut, next to Section House.

By the time we had all made it to the hut and built up a fire warm enough to kick our boots off, our socks were steaming in spite of how cold our extremities were. It took well into the night to heat up the hut, and we all spent the first night sleeping around the wood stove. Yes, it took seven hours for the last of us to make it to the front door of Section House, but the spring trip to the Benedict Huts outside of Aspen was still loads more difficult — and we didn’t even pull any sleds! The next day was windless, sunny, clear, and warmer outside than it was inside, which allowed us to get back out on our skis and snowboards to enjoy the backcountry without weight on our backs.

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.