Category Archives: Backcountry

WMS Blog Entry No. 5: Advances in Frostbite, a Synopsis of Dr. Peter Hackett’s Lecture

Frostbite is an injury caused by freezing of the skin and underlying tissue. The main pathophysiology of frostbite is ischemia. Basically, where there is blood flow there is heat and where there is no blood flow there is no heat to that area. The vasoconstriction and loss of blood flow to the skin predispose the skin to becoming frozen. Heat transfer depends on blood flow and blood flow depends on sympathetic nerve tone. In our extremities, there are only nerves that cause vasoconstriction. Exposure to cold or a drop in the body’s core temperature can induce vasoconstriction from these sympathetic nerves in which decreases the amount of blood flow to the extremities to keep the central aspect of the body warm and central organs well-perfused to help to maintain the body’s core temperature.

Frostbite usually occurs in the apical areas of the skin also called glabrous, which is Latin for smooth because these areas have no hair. These areas include the face, palmar surface of the hand, and the plantar surface of the foot. These areas of the skin are rich in arteriovenous anastomoses, which are low-resistance connections between the small arteries and small veins that supply the peripheral blood flow in the apical regions of the skin. These anastomoses allow the blood to flow into the venous plexus of the skin without passing through capillaries, and play a major role in temperature regulation.

Causative factors of frostbite include inadequate insulation, circulatory compromise, dehydration, moisture, trauma, and immobility. All of these factors in combination can result in frostbite.

The behavioral risk factors include mental illness, alcohol/drug use, fear, apathy, and anxiety. All of these risk factors can contribute to frostbite, generally, from poor self-care.

Frostbite is said to kill twice during its two phases that occur. The first phase is the frozen phase in which ice crystals form in the intracellular compartment at about 29 degrees Fahrenheit. These ice crystals will suck the fluid out of the endothelial cells and become enlarged causing the endothelial cells to lyse from dehydration and interrupt microcirculation. The second phase is the rewarming phase in which the skin thaws and is at risk for microthrombi production and necrosis due to prolonged injury to those endothelial cells.

The usual phase at which we see frostbite in a clinical setting is after thawing, in which the skin looks flushed pink, red, with the appearance of blebs that form one hour to twenty-four hours after thawing. These blebs can rupture spontaneously in 4-10 days and shortly after, a cast-like eschar forms. Then the eschar usually sheds in 21-30 days.

Deep Frostbite

Frostbite is classified based on the depth of tissue damage, from superficial with no tissue damage being mild and deep tissue damage including muscle, bone, or tendon being classified as severe frostbite. The mildest form of frostbite is called frostnip. Frostnip is freezing of the skin but there is no actual freezing injury and doesn’t cause permanent skin damage.

Stages of Frostbite

What can you do in the field for Frostbite?

It is important to provide supportive care with IV or PO hydration to prevent dehydration. If the affected area is frozen with no imminent rescue, it is recommended to thaw the area with warm water and try to avoid refreezing. You can give NSAIDs, such as Ibuprofen, 400 mg every 8 hours, or ketorolac 30 mg IV. If the person is at altitude and their oxygen saturation is low you can provide oxygen. However, the individual must be taken to the nearest hospital for further treatment, especially in cases of severe frostbite.

New research studies have been exploring the use of thrombolytics in the treatment of frostbite. Many of the research studies have shown that IV TPA or iloprost may be of benefit to administer in a hospital setting. However, iloprost is not approved for IV use in the United States and other prostacyclins have not been studied for the use of frostbite as of yet. There are current literature and guidelines that have been published for the prevention and treatment of frostbite, however, more research is needed to further support standardized treatment of all patients with frostbite with thrombolytic therapy. Hopefully, these new studies will encourage more research into using thrombolytics and prostacyclins for frostbite.

In the meantime, it would be best to stay warm to prevent frostbite. Tips to help in frostbite prevention include:

  • Limit time you’re outdoors in cold, wet, or windy weather. Pay attention to weather forecasts and wind chill readings. In very cold, windy weather, exposed skin can develop frostbite in a matter of minutes.
  • Dress in several layers of loose, warm clothing. Air trapped between the layers of clothing acts as insulation against the cold. Wear windproof and waterproof outer garments to protect against wind, snow, and rain. Choose undergarments that wick moisture away from your skin. Change out of wet clothing — particularly gloves, hats, and socks — as soon as possible.
  • Wear a hat or headband that fully covers your ears. Heavy woolen or windproof materials make the best headwear for cold protection.
  • Wear socks and sock liners that fit well, provide insulation, and avoid moisture. You might also try hand and foot warmers. Be sure the foot warmers don’t make your boots too tight, restricting blood flow.
  • Watch for signs of frostbite. Early signs of frostbite include red or pale skin, prickling, and numbness.
  • Eat well-balanced meals and stay hydrated. Doing this even before you go out in the cold will help you stay warm.

Lauren Pincomb Apodaca is a second-year Physician Assistant student in the Red Rocks Community College Physician Assistant Program. Originally from Las Cruces, New Mexico, she graduated from New Mexico State University with a Bachelor of Science in Biochemistry and a Bachelor of Art in Chemistry. After obtaining her undergraduate degrees, she was accepted as a Ph.D. fellow in Pharmacology at the University of Minnesota where she conducted research in a biomedical laboratory doing cancer research. She then realized that she wanted to make a difference in people’s lives through hands-on experience rather than working in a laboratory. She went back to New Mexico and received her certification as a nursing assistant and started from the ground up to reach her ultimate goal of being a Physician Assistant. She has enjoyed living in Colorado and the many outdoor activities that Colorado has to offer. Her favorite are kayaking, fishing, and hiking. She is looking forward to graduating soon.

References:

Hill, C. (2017, December 22). Cutaneous Circulation – Arteriovenous Anastomoses. Retrieved September 27, 2020, from https://teachmephysiology.com/cardiovascular-system/special-circulations/cutaneous-circulation/

Frostbite. (2019, March 20). Retrieved September 27, 2020, from https://www.mayoclinic.org/diseases-conditions/frostbite/symptoms-causes/syc-20372656

WMS Blog Entry No. 4, Part I: Tick Bite Prevention and Proper Removal

Ticks are blood feeding parasites. Ticks are known as vectors because they can transmit different pathogens responsible for several diseases including Colorado Tick Fever, Rocky Mountain Spotted Fever (RMSF), Tularemia and relapsing fever. While there are 27 species of ticks in Colorado, almost all human encounters w/ ticks in Colorado involve the Rocky Mountain wood tick, a tick that only lives in the western U.S. and southern Canada at elevations between 4,000 and 10,000 feet. Another highly prevalent tick is the brown dog tick which is specific to dogs.

Before you go out!

DO:

  • Wear protective clothing! Wearing long sleeved shirts, long pants tucked into your socks and close toed shoes can keep ticks from getting onto your skin, as ticks are usually acquired while brushing against low vegetation.
    • wear light colored clothing, as this makes it easier to find ticks that have been picked up
    • Treat clothing w/ permethrin as this can help kill or repel ticks for days to weeks! Do not apply directly to skin.
  • Use Tick repellent. This includes the well-known DEET along with picaridin, IR3535 and oil of lemon eucalyptus
    • Repellent can be applied either directly to skin or to clothing, AND is most effective if applied to the lower body that is likely to come in contact with ticks first!
    • If applying repellents to skin:
      • DO NOT use high concentration formulas on children (DEET concentration > 30)
      • AVOID applying repellents to your hands or other areas that may come in contact with your mouth
      • DO NOT put repellent on wounds
      • ALWAYS wash skin that has had repellent on it.
  • Remember: Dogs can get ticks too! Don’t forget to consult your veterinarian about how to protect your furry friends against ticks.

When you go out: DO NOT assume that you won’t get bit.

  • Avoid tick habitat
    • Ticks are most active in spring and early summer and are concentrated where animal hosts most commonly travel, including areas of brush along field and woodland edges or commonly traveled animal host paths though grassy areas.
      • DO try to avoid exposure in these areas by staying in the center of marked trails when hiking to avoid brushing vegetation that ticks may be perched on waiting for you!
    • If possible, avoid these sites during tick season.
    • If you live in known tick territory, you may even get a tick bite in your own backyard! Decrease this risk by creating a tick-free zone around your house by keeping your lawn mowed, eliminating rodent habitats (wood or rock piles) around your house, and placing wood chips between your lawn and tall grasses or woods.

After coming back inside

  • Perform a tick check which includes botha visual and physical inspection of your entire body, as well as your gear and pets. Because ticks take several hours to settle and begin feeding, you have time to detect and remove them. You tend to not feel ticks because their saliva has histamine suppression and analgesic effects. Ticks like warm, moist and dark areas but can latch anywhere.
    • Examine your scalp, ears, underarms, in and around the belly button, around the waist, groin/pubic area, buttocks and behind your knees.
    • If camping, perform tick checks daily on humans AND pets, making sure to examine children at least twice daily. Again, pay special attention to the head and neck and don’t forget to check clothing for crawling ticks.
    • Shower and wash your clothes after returning home from the outdoors.

If you or a family member get bit by a tick: DO NOT PANIC, and DO NOT immediately rush to the emergency room! If the tick has been attached for less than a day, the chance of the tick transmitting one of these diseases is low. Removing ticks can be tricky, as they use their mouthparts to firmly attach to the skin.

Best method for tick removal -> remove as quickly as possible!

1. Grasp the tick with fine tipped tweezers as close to the skin as possible. If tweezers are not available, use a rubber gloved hand or place tissue or thin plastic over the tick before removing it to avoid possible transmission of disease.

2. Pull tick SLOWLY and with STEADY PRESSURE STRAIGHT away from the skin

  • DO NOT:
    • Crush, puncture, twist or jerk the tick as you remove it. This may increase risk of the tick regurgitating infected body fluids into the skin or leaving mouthparts in skin

3. After the tick is removed, disinfectant the attachment site on skin and WASH YOUR HANDS. Dispose of the live tick by placing in a sealed bag/container and submersing it in alcohol, then wrapping it tightly and crushing it in duct tape, OR flushing it down the toilet.

  • DO NOT:
    • crush the tick in your fingers
    • try to suffocate the tick still on the person by covering it with petroleum jelly OR touching it with a hot match to suffocate -> these methods can cause the tick to burst and INCREASE time the tick is attached, as well as making the tick more difficult to grasp

Remember: the goal is to remove the tick quickly from the host as opposed to waiting for it to detach on its own.

If you remove the tick and are worried, you can always put the tick in a sealed container with alcohol and bring the dead tick to your medical provider.

If you develop a rash or flu-like symptoms (fever, fatigue, body aches, headache) within several weeks of removing tick, see your medical provider and tell him/her about the recent tick bite, when it occurred and where you acquired the tick.

Remember: These diseases are very treatable if caught early enough!

Graphic taken from https://www.cdc.gov/ticks/pdfs/FS_TickBite-508.pdf

Stay tuned for next month’s explanation of the tick life cycle and tick-borne diseases in the high country!

References

1. Colorado Tick and Tick Born Diseases fact sheet. https://extension.colostate.edu/topic-areas/insects/colorado-ticks-and-tick-borne-diseases-5-593/ Accessed on 8/8/20

2. Peterson J., Robinson Howe. P. Lyme Disease: An Uptick in Cases for 2017. Wilderness Medicine Magazine: https://www.wms.org/magazine/1213/Lyme-Disease. Accessed 8/8/20

3. Do’s and Don’t’s of Tick Time: https://awls.org/wilderness-medicine-case-studies/dos-and-donts-of-tick-time/ Accessed 8/8/20

Laurie Pinkerton is a 3rd year Physician Assistant Student studying at Drexel University in Philadelphia, PA. Originally from Northern, VA, she graduated from the University of Mary Washington in Fredericksburg, VA with a degree in Biology in 2014. She moved to Keystone to live that ski life and stayed for 2 years, working as a pharmacy tech at Prescription Alternatives and as a medical assistant at Summit Cardiology. Prior to starting PA school, she moved to Idaho where she learned about organic farming and alternative medicine.  She has loved every second of being back in Summit County and learning here at Ebert Family Practice. She looks forward to practicing Integrative Medicine in the near future.

WMS Blog Entry No. 3: Pre-acclimatization, A Synopsis of Dr. Peter Hackett’s Lecture

What is pre-acclimatization? It is a process of adjusting to a new climate, usually higher elevation, reducing hypoxemia in high altitude settings in turn saving time, money, and most importantly, reducing altitude sickness. It can also allow for better sleep/comfort and physiological/cognitive performance at a high altitude. Acclimatization is a time-dependent process as over 5,000 genes are impacted by a large shift in elevation affecting ventilation, plasma volume, and hemoglobin mass, among other things. The whole process is not completely understood, but one key element is the hypoxic ventilatory response (HVR). HVR is activated by the aortic artery baroreceptors, as oxygen in the blood reduces it triggers an increase in respiration. This happens immediately as you ascend in altitude and maximizes at 7-14 days. Arterial oxygen increases by an increase in ventilation/saturation and also by dropping plasma volume, increasing hemoglobin concentration, and then later on, increasing overall Hgb production which in theory, overall decreases altitude sickness.

So how can you prepare yourself or pre-acclimatize?

Some of the better-known methods are spending time at higher altitudes prior to your destination, using a hyperbaric or normobaric chamber, blood doping, hypoxic exercise training, and a few pharmaceutical methods. All of these are options, but the key question is, which ones truly work?

Pre-acclimatization with actual altitude is the most useful. Generally speaking, you would pick your maximum sleeping altitude at your destination and slowly work your way towards that altitude. You pick an ascent profile which preferably would be spread over a week or more to be most useful. This pre-acclimatization should be completed no more than 1-2 weeks prior to your destination so that any pre-acclimatization gained doesn’t wane prior to your trip.

Simulated altitude is another option which includes hypoxic tents, hypoxic rooms/homes, hypoxic exercise chambers, and hypoxic masks. Out of these four, hypoxic tents or hypoxic rooms/homes, where exposure is over a long duration, are by far the most effective. Hypoxic masks and exercise chambers are not very effective as their short duration does not give the body enough time to make the proper adjustments and although might be beneficial in respiratory muscle training/performance, do little in the way of pre-acclimatizing your body. Studies show more benefit from hypobaric hypoxia training vs normobaric hypoxia training but keep in mind studies are very limited and warrant much further research. Overall, simulated altitude minimum requirements look to be somewhere in the range of 1 week of exposure, 7 hours per day, and a minimum effective altitude of 2200-2500 m and being no more than 1500-2000 m below your target sleeping altitude. Shorter term protocols can attenuate altitude sickness but not the incidence some studies suggest. As to why hypobaric methods are more effective than normobaric methods, no one really knows yet and more research is needed.

Changing your living destination to something at a much higher elevation and exposure over years or moderate altitude residence (MAR), is the most effective method according to some studies, but this is far from feasible for most. There are studies to show epigenetic changes for those who relocate to higher elevations for long periods and these appear to be much less than those who have genetically adapted to higher elevation over generations but still more effective than the previous mentioned short-term options.

Hikers often camp at the Angel of Shavano campground before ascending Mt. Shavano, one of Colorado’s famed fourteeners.

Oxygen saturation is maximal at 11 days of exposure to a specific elevation. Diamox (acetazolamide) increases ventilation and can help with acclimatization but there isn’t much data on how using this pharmaceutical compares to other methods mentioned. World-renowned high altitude expert and pioneerDr. Peter Hackett theorizes that it may fall just short of MAR, but again, more research is needed. Short-term altitude exposure shows benefits at 7 days but a longer exposure such as 15 days has been shown to be much more beneficial.

Blood doping with EPO can be somewhat effective over a 4+ week treatment and can potentially decrease AMS and potentially increase exercise performance but the data is limited and conflicting on this. Also, it appears that it is only effective up to 4,300 m but not beyond that as arterial oxygen content is not the determining factor for sleep and cognition performance at high altitudes but rather oxygen delivery which is affected by hematocrit and viscosity of blood.

Hypoxia inducible factor (HIF) is a regulatory factor in cells that respond to a reduction in oxygen, causing changes in about 5000 different genes to help the body adjust to meet oxygen requirements. It is suggested that we could pharmaceutically activate this factor prior to destination in order to acclimatize the patient allowing for less complications and better results at higher elevations. Currently there are some drugs in trials but nothing specifically FDA approved.

Overall, data and studies are limited but the most effective current pre-acclimatization method is long-term altitude training (real or simulated). If possible, plan your ascent trip to be slow and steady to obtain best results with the least amount of complication.

Joel Miller is currently preparing to graduate from Red Rocks Community College’s reputable Physician Assistant program this Fall. He has been a resident of Colorado for four years where he has immensely enjoyed the outdoors camping, fishing, hiking, hunting, and exploring Colorado’s wide variety of breweries.

WMS Blog Entry No. 2: Long Distance Backpacking, the Wisdom of Dr. Sue Spano

Graduate of Temple University School of Medicine, Director of Wilderness Medicine Fellowship at University of California San Francisco Fresno Department of Emergency Medicine, Sue Spano, MD, FACEP, FAWM presented twice this year at the Wilderness Medicine Society’s annual (virtual) conference. Boasting the experience of about a thousand miles of the Pacific Coast Trail in Oregon and California and other recreational excursions, she shared a wealth of advice and personal recommendations for long distance backpacking.

To put it all into perspective, she referenced the Pacific Coast Trail (PCT), John Muir Trail (JMT) and the Appalachian Trail, each covering 2650 mi, 211 mi, and 2200 mi respectively. These are trips that last, easily, months. The general time frame for many of her recommendations is about five to six months.

Not surprisingly, the issue of weight comes up frequently for travelers. There are a number of studies done on this, from body mass index to base pack weight, and every ounce counts. While fitness level does not directly correlate to the incidence of injury, increase in BMI does correlate directly to increased risk of illness, injury, and trail evacuation. It is notable, however, that in a poll, about 2/3 of those hiking the PCT and well above those on the JMT trained before embarking on the trail, and most of them considered themselves to be “above average” in their level of fitness (7 or 8 on a scale of 1 to 10).

Although Dr. Spano does recommend carrying backups of three things — lighters, water treatment systems, and first aid — when it comes to base weight, there are several items that may be worth a little more investment for fewer ounces. Right off the bat: trail runners over boots. The mere difference in ounces becomes significant after so many miles, and the flexibility of softer shoes helps prevent a lot of discomfort (blisters, for example). She also notes that trail runners are more breathable and dry more quickly, sharing that she doesn’t typically bother to take them off to cross water or in snow as they will dry right on your feet along with your socks. It would be interesting to hear accounts of the footwear of preference on the Colorado Trail, where elevations are frequently higher and there may likely be more snow in general.

In another poll, 21.8 lbs was the base weight carried by packers, most of whom would have carried less in hindsight. This can be achieved by investing in lighter backpacks, tents, hiking poles, sleeping bags and sleeping pads, specifically. ULA Equipment out of Logan Utah makes an ultra-light pack that Dr. Spano prefers, “no conflict of interest”, just her personal favorite.

Skip the toothpaste, Spano urges. It doesn’t actually clean your teeth, so you might as well just brush with water.

Something else we’re seeing more and more of on distance excursions is tents that incorporate hiking poles as tent poles. Hiking poles themselves are recommended more and more as well, as they distribute more weight away from your legs.

Toilet paper must be packed out with you on much of the trail these days! Thus, the rise of the “backcountry bidet”, which you can make yourself by poking holes in the cap of a plastic liter water bottle. “You come out feeling like you had a full shower,” Spano testifies, and the water you use does not have to be filtered or potable.

Water! Know where your next water source will be. “Camel up at water sources … When you get to a water source, spend some real quality time there soaking your feet, cleaning your bandana, drinking as much water as you possibly feel like you want. Because the only time that your water is going to be ice cold is when you’re at that stream. Anything that you carry with is going to get really warm … Your easiest way to carry water is in your belly.”

When it comes to long distance backpacking, one of the finest pieces of advice Dr. Spano offers is that you should always be upgrading and optimizing your strategy:

“A person who hasn’t changed their backpacking practices in the last 10 years is not a person that I would really want to backpack with. A person who practices medicine the same way they did 10 years ago is not someone I want to practice medicine with. You should always be improving your gear, improving your behaviors, improving the way you approach the same challenge so that you’re a better backpacker as a result.”

Her hour-and-a-half practicum is available on the Wilderness Medicine Society website.

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

WMS Blog entry No. 1: The Rule of 3’s and other pearls from the annual Wilderness Medical Society Conference 2020

Over 800 participants from 25 countries joined the virtual conference this year which included Dr. Chris’ poster presentation on growth at altitude. Over the next several months we will extract the most relevant information to publish in our blog, starting with:

The Rule of 3’s

You can survive 3 minutes without oxygen

                              3 hours without shelter in a harsh environment

                              3 days without water

                              3 weeks without food

Dr. Christine Ebert-Santos presents her research on growth in children at high altitude, “Colorado Kids are Smaller.”

We will be sharing some of the science, experience and wisdom from these meetings addressing how to survive. For example, Dr. Peter Hackett of the Hypoxia Institute reviewed studies on how to acclimatize before travel or competition in a low oxygen environment.

Susanne Spano, an emergency room doctor and long distance backpacker discusses gear, how to build an emergency shelter in the wild, and when it is OK to drink from that refreshing mountain stream.

Michael Caudell presenting on plant toxicity.

Michael Caudill, MD shares what NOT to eat when you are stranded in the wilderness in his lecture on toxic plants.

Presentations included studies of blood pressure in people traveling from sea level to high altitude, drones delivering water to stranded hikers, an astronaut describing life and work at 400,000 m, what is the best hydration for ultra athletes, how ticks can cause meat allergy, and, as always, the many uses for duct tape.

Duct tape for survival.

We will also update you on the treatment of frostbite as well as a discussion about “Climate change and human health.”

Sign up for our regular blog updates so you can be updated on wilderness and mountain medicine!

Backcountry & Avalanche Safety: Insight from Backcountry Athlete Dan Beerman

Another Spring season in Colorado. The ski resorts have closed early per the COVID-19 protocol, along with most other establishments. Even on the normal schedule, most ski resorts would have been closed for the season by now, bringing more people to the backcountry. But this year seems to have seen an upswing in backcountry activity, where many people are going to stay active while limiting exposure to others. Just over a week ago, a team of 20 search and rescue volunteers rescued a 26-year-old man who had fallen hiking on steep terrain around St. Mary’s Glacier, Colorado. Last year, a total of 10 snowmobilers were killed in the backcountry in avalanche slides. Only one was wearing a beacon.

Backcountry and Avalanche Safety resources, thankfully, are growing more plentiful and accessible, and last winter, we published an article on the basics. Earlier this winter, I spoke with backcountry athlete and web development colleague Dan Beerman, whose experience in the backcountry really broadened as a backpacking guide in New Mexico during the summers 12 years ago, followed by a position as a climbing instructor.

Dan Beerman on the Pacific Crest Trail

When I was a backpacking guide, I was on the search and rescue if I didn’t have a crew … We had a radio, so we were the point of contact for finding and doing extraction. That’s when I learned the most and was exposed to the most. I took my Wilderness First Responder course in 2014, and that was through the Wilderness Medical Institute.

Dan’s also a fellow hut tripper, and we’ve been talking about doing one together (when we’re on the other side of the current pandemic). He’s spent the last two New Year’s in huts, backcountry skiing or snowshoeing tours. This past year, he skied Buffalo Mountain’s Silver Couloir, in the Gore Range, and made an attempt at a couloir on Mt. Torrey’s. And there have got to be some good “couloir” puns out there.

Beerman on Buffalo, Summit County, CO.

I have aspirations to do the Colorado trail quickly, but I don’t know if I wanna do that in a competitive way or just recreationally backpack it. It’s hard to balance summer objectives, or climbing objectives vs. winter backcountry goals vs. alpine mountaineering objectives.

And he makes a great point:

In Colorado, your recreation is so close to becoming high-consequence all of the time! If the weather changes from the trailhead, that could be a really big problem.

I’m familiar. Nothing really teaches you as much or as quickly as getting caught in Colorado’s extreme weather patterns.

Avalanche Safety

Dan took an Avalanche Awareness and Safety class through Colorado Mountain School, held up in Rocky Mountain National Park over two field days after two nights of class in Boulder. His main takeaway:

Check an avalanche conditions snow report daily. Observing the snowpack over the season is going to make your confidence on the day of your excursion a lot higher. I’d had no context for why avalanches were happening, where and why it’s dangerous. Having that lens through which to view weather events in terms of avalanche conditions is so valuable. It’s an intuitive thing about paying attention to the weather.

This is my first season getting out at Copper, for example, and they all have that double-black diamond terrain in the back bowls that are labeled ‘EX’ on it. There’s a sign that says, ‘Ski with a partner,’ and I just thought, ‘Oh, shit, that sign should probably be much bigger!’

Beacon, shovel, probe are the mandatory avalanche terrain items — you’re putting other people at risk if you don’t have [them], because even if you observe a slide, you can’t do anything about it. Additionally, if you don’t have a beacon in a slide, others can’t find you. You’re not contributing to a rescue, nor can you be rescued. In Colorado, there’s an increasing awareness for that. I typically will bring that with me all the time, it’s just always in my ski bag. Having some snacks, having some water, those are the kinds of things: you should never not have them.

Beerman in his beacon.

Training

I’ll take the goals of the expedition and plan accordingly. If I’m doing a ski trip, I’ll wanna get out and do hikes with weight or runs where I’m doing elevation several times. I like to do six weeks out, of four weeks of training and two weeks of tapering down.

Nutrition

I tend to be in a constant attempt to gain weight. On the Pacific Crest Trail I tried to gain weight prior, eating a lot of fatty foods, that kind of thing. Jonathan and I came up with this metric: calorie-per-dollar-per-ounce. Lightweight food that’s affordable, easy to ingest, easy to prepare, and you aren’t having to burn a lot to carry that with you to the backcountry.

[On the trail], peanut butter is always a winner. Olive oil is one of the highest calorie-per-ounce [food]. I have literally drank it before, but just add it to everything. I do eat a lot of standard trailmix, it’s easy and accessible. I’m a big fan of pumpkin seed mix or stuff with chocolate in it. I like CLIF bars. I do not like Luna bars because I’ve eaten so many of them. I can’t eat pop tarts anymore because they used to be in the meals that were issued when I was a guide. Snickers bars are a great calorie-per-dollar-per-ounce deal. I eat a Snickers bar or two before bed when I’m sleeping at altitude so my body has calories to stay warm.

I’ll make these mass-gainer complex food supplements. It’s like protein powder, but it also has carbs, like a workout and performance powder. And I would add that to water with coffee, and that would be a breakfast while hiking. There’s a lot of different kinds of powders and mixes you can add, but when you’re in calorie-burning mode, I do recommend this. If you’re hiking 20+ miles in a day or 4000+ feet of elevation in a day, you’re burning greater than 4000 calories, so you really have to eat more than you think you can.

Acclimatization

I wouldn’t say that I had HAPE (high altitude pulmonary edema) or HACE (high altitude cerebral edema) … Definitely, especially when I was younger … I would travel from 4000′ to 10,000′ in a 24-hour period. I’ve actually had search and rescues where someone was having night-terrors or hallucinations [due to HAPE or HACE]. I was a backountry professional for the Boy Scouts at a camp at 10,800′ (one of the first backcountry camps, in New Mexico). I’ve experienced dizziness, nausea, insomnia, weakness of the knees, elevated heart rate … and I’m a runner, I’m in decent shape. But you should acclimatize before setting out on a trip.

Skiing down the Silver Couloir.

One last piece of advice,

Learn the Leave No Trace principles. We live in a state where impact is so concentrated that the more that everybody knows, the more likely it will be there for the next generation.

Dan and his backpacking, backcountry cohorts keep a blog full of breathtaking landscapes and telling captions on CaptainsofUs.com.

There will be plenty of time to escape to the backcountry again after the risks of COVID-19 have subsided. The current time is a good time to start preparing mentally. Know before you go.

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.