Category Archives: Doc Talk

HARPE is the New HAPE

It took ten years for me to convince high altitude experts that children living in the mountains get high altitude pulmonary edema (HAPE) without leaving home. My observations were published in 2017 in the Journal of High Altitude Medicine and Biology,

High-Altitude Pulmonary Edema
in Mountain Community Residents

This week Dr. Jose A Castro-Rodriguez MD PhD ATSF discussed HAPE in children at the 8th World Hypoxia conference in La Paz including the now renamed high altitude resident pulmonary edema (HARPE) in his presentation.

Dr. Castro-Rodriguez emphasized the importance of recognizing the three forms of HAPE, including reentry HAPE when children return to the mountains from vacation, since these can be life threatening.

My work has been cited in articles by pulmonologists Deborah Liptzin and Dunbar Ivy from Children’s Hospital of Colorado and geneticist Christine Eichstaedt and her team at the University of Heidelberg.

At Ebert Family Clinic we give every patient/family a free pulse oximeter. The ability to measure the oxygen saturation of anyone with cough, congestion, or fatigue can facilitate early treatment with oxygen and prevent visits to the emergency room, hospital and intensive care unit.

I recently received first prize for a poster presentation on HARPE at the fall Colorado Medical Society meeting, and second prize for a poster on Trauma and HAPE.

For more information about HAPE, HARPE and Trauma-related HAPE, see previous blog entries.

References

Ebert-Santos C. High-Altitude Pulmonary Edema in Mountain Community Residents. High Alt Med Biol. 2017 Sep;18(3):278-284. doi: 10.1089/ham.2016.0100. Epub 2017 Aug 28. PMID: 28846035.

Giesenhagen AM, Ivy DD, Brinton JT, Meier MR, Weinman JP, Liptzin DR. High Altitude Pulmonary Edema in Children: A Single Referral Center Evaluation. J Pediatr. 2019 Jul;210:106-111. doi: 10.1016/j.jpeds.2019.02.028. Epub 2019 Apr 17. PMID: 31005280; PMCID: PMC6592742.

Liptzin DR, Abman SH, Giesenhagen A, Ivy DD. An Approach to Children with Pulmonary Edema at High Altitude. High Alt Med Biol. 2018 Mar;19(1):91-98. doi: 10.1089/ham.2017.0096. Epub 2018 Feb 22. PMID: 29470103; PMCID: PMC5905943.

Eichstaedt CA, Mairbäurl H, Song J, Benjamin N, Fischer C, Dehnert C, Schommer K, Berger MM, Bärtsch P, Grünig E, Hinderhofer K. Genetic Predisposition to High-Altitude Pulmonary Edema. High Alt Med Biol. 2020 Mar;21(1):28-36. doi: 10.1089/ham.2019.0083. Epub 2020 Jan 23. PMID: 31976756.

How do you define a good night’s sleep? : An Introduction to the SleepImage Ring, An Interview with Dr. Neale Lange

Dr. Neale Lange is a leader in sleep medicine who started his medical training in South Africa and now practices Pulmonary and Sleep Medicine for UCHealth in Denver.

Sleep plays a crucial role in cognitive behavior and physical well-being but is often times taken for granted. As Dr. Neale Lange puts it, many people have been taught or trained to devalue sleep in an effort to maximize the time awake to study, get caught up on work, or complete other tasks1. However, research over the years has demonstrated that the toll sleep deprivation plays on the body is significant. Sleep deprivation can lead to impairment in memory, cognition, and emotion, and can lead to chronic medical conditions such as diabetes, heart disease and cancer2. It is also thought that sleep deprivation and hypoxemia are associated with white matter disease in the brain and deep slow wave sleep, is what fixes it4.

Furthermore, Dr. Lange states that sleeping at altitude carries its own risks. Sleeping at altitude, where there is less oxygen in the air, can cause overall poor sleep quality, increased awakenings, frequent arousals, marked nocturnal hypoxia and periodic breathing.. Additionally, sleeping at altitude can negatively impact our sleep architecture, increasing the amount of light sleep and decreasing the amount of deep slow-wave and REM sleep which plays a key role in memory creation, retention and emotional control and personal behavior3.

In hopes to defining a person’s sleep at altitude, Dr. Lange started a sleep lab in Summit County at St. Anthony Summit Hospital, which, as he put it, “opened a can of worms” when he saw how sick and complicated patients sleep apnea cases were. Time and time again, he saw that when patients who were struggling with sleep apnea were given 2L of supplemental oxygen by nasal cannula, the apnea improved. Additionally, those patients with sleep apnea who descended around 4,000 ft to Denver have improved saturations but may still have sleep apnea. His facility study included baseline tests at two hours without oxygen and then two hours with oxygen while a person slept. He found that although the apnea improved in many, improvements in sleep itself did not always follow.

This left him with the question of: How do we measure “good sleep?” Well, as he states, it is not that simple. Though the obvious answer may be to turn to medications to determine good sleep, this can be misleading. Medications have an amnestic effect on people because when they wake up in the morning, if their memory is blank, they feel that they have had a good night’s rest. But in reality, this is subjective. The true data collected during sleep is objective, so to answer his question of measuring sleep, he turns to a tool of cardiopulmonary coupling (CPC). This tool, called a SleepImage Ring, looks similar to an Apple Watch and is worn around a patient’s finger throughout the night. Using Bluetooth technology, data is collected and transferred through a smartphone for analysis, providing the patient with a vast amount of data about their sleep.

The SleepImage System is the only FDA approved medical grade technology with the simplicity of a consumer device on the market for use in both children and adults. It is intended for use by a healthcare professional to establish a patient’s sleep quality and aid in evaluation and clinical diagnosis of sleep disorders and sleep disordered breathing, or SDB. It uses CPC technology which is “based on calculations and spectral analysis of cardiovascular- and respiratory data” collected during sleep using continuous “normal sinus rhythm ECG- or PLETH (Plethysmogram from a PPG sensor) signal as the only input requirement.” The output metrics from the SleepImage System include “sleep duration (SD), total sleep time (TST), wake after sleep onset (WASO) and sleep quality (SQI) and sleep disordered breathing (SDB) related output metrics that include an Oxygen Desaturation Index (ODI), an Apnea Hypopnea Index (sAHI), a Respiratory Disturbance Index (sRDI), Central Sleep Apnea Index and the Sleep Apnea Indicator (SAI) that is derived from Cyclic Variation in Heart Rate (CVHR)6. With a PLETH signal including saturations, the SDB data conforms with the American Academy of Sleep Medicine AHI scoring and severity definitions.” Additionally, we can determine how long a patient spends in various sleep stages, including stable, unstable and REM sleep, determine apnea events, and autonomic nervous system activity. The data is generated and presented on the SleepImage Quality Report (shown below). The ring and report are designed as such where you can do individualized, precise sleep medicine. It is true when Dr. Lange says “the devil is in the details” referring to the vast amount of information that can be analyzed from this device during one night of sleep.

Currently, the gold standard to monitoring and diagnosing sleep disorders is polysomnography, also known as a sleep study, which records certain body functions as you sleep to determine brain activity, oxygen, heart rate, breathing, as well as eye and leg movements5. It can detect types of sleep apnea; however, this comprehensive test is typically done during an overnight stay in a hospital or other sleep center, which presents a disadvantage. The disadvantage to polysomnography is that it takes people out of their natural sleeping environment, is costly, and time consuming, which deter a large portion of people from partaking in sleep studies.

Dr. Neale Lange explains that this device can change the way we look at our sleep and may provide better insight into a person’s sleep on a greater scale due to the ease of wearing the device over multiple nights, compared to spending one night in a sleep lab for a study. A study done on 65,000 users indicated that there is added benefit to multi-night testing as compared to single night testing. Testing for sleep apnea on only one night has been shown to vary from night to night, indicating that single night testing potentially misclassifies 20% of people7. This device provides the ease of multi-night testing for patients, which is a significant advantage and increases accurate diagnosis of sleep disordered breathing. To Dr. Lange, “it is about individualized patient care” and evaluating “the person sitting in front of [him]” which makes this device so valuable. Dr. Lange states that, “living at altitude is a particular challenge, and if people are thinking ahead,” instead of wondering, “how long do I want to live at altitude,” a better question would be, “how can I invest in brain wellness.”

In summary, sleep deprivation, especially at altitude, is an important focus that people should not overlook. At Ebert Family Clinic in Frisco, one of the most important questions asked is, “how did you (or your child) sleep last night?” Now, with the SleepImage Ring, we can objectively evaluate our patient’s sleep which can aid in the diagnosis and management of various conditions.

References

  1. South African Dental Association. (2021, November 25). The sleep disorder spectrum: Mouth breathing to Osa – Dr Neale Lange (WEB126). YouTube. Retrieved December 5, 2021, from https://www.youtube.com/watch?v=agZruGNfFNI
  2. Irish, L. A., Kline, C. E., Gunn, H. E., Buysse, D. J., & Hall, M. H. (2015). The role of sleep hygiene in promoting public health: A review of empirical evidence. Sleep medicine reviews, 22, 23–36. https://doi.org/10.1016/j.smrv.2014.10.001
  3. Wickramasinghe, H., & Anholm, J. D. (1999). Sleep and Breathing at High Altitude. Sleep & breathing = Schlaf & Atmung, 3(3), 89–102. https://doi.org/10.1007/s11325-999-0089-1
  4. Voldsbekk, I., Groote, I., Zak, N., Roelfs, D., Geier, O., Due-Tønnessen, P., Løkken, L. L., Strømstad, M., Blakstvedt, T. Y., Kuiper, Y. S., Elvsåshagen, T., Westlye, L. T., Bjørnerud, A., & Maximov, I. I. (2021). Sleep and sleep deprivation differentially alter white matter microstructure: A mixed model design utilizing advanced diffusion modelling. NeuroImage, 226, 117540. https://doi.org/10.1016/j.neuroimage.2020.117540
  5. Mayo Foundation for Medical Education and Research. (2020, December 1). Polysomnography (Sleep Study). Mayo Clinic. Retrieved December 25, 2021, from https://www.mayoclinic.org/tests-procedures/polysomnography/about/pac-20394877#:~:text=Polysomnography%2C%20also%20called%20a%20sleep,leg%20movements%20during%20the%20study.
  6. MyCardio LLC. (2021, November 24). Introduction to sleepimage®. Retrieved December 10, 2021, from https://sleepimage.com/wp-content/uploads/Introduction-to-SleepImage.pdf
  7. Lechat, B., Naik, G., Reynolds, A., Aishah, A., Scott, H., Loffler, K. A., Vakulin, A., Escourrou, P., McEvoy, R. D., Adams, R. J., Catcheside, P. G., & Eckert, D. J. (2021). Multi-night Prevalence, Variability, and Diagnostic Misclassification of Obstructive Sleep Apnea. American journal of respiratory and critical care medicine, 10.1164/rccm.202107-1761OC. Advance online publication. https://doi.org/10.1164/rccm.202107-1761OC

Catherine Atkinson is a second-year Physician Assistant student at Red Rocks Community College in Arvada, CO. She was born and raised in Colorado where she has lived her entire life. She received her undergraduate degree in integrative physiology from The University of Colorado- Boulder. Prior to PA school, she was an ophthalmic technician at Colorado Retina Associates. In her free time, she loves cooking, skiing, playing golf and spending time with her family and friends. 

Doc Talk: Pregnancy at Altitude & What You Need to Know, an Interview with Dr. Javier Gutierrez, MD (OB/GYN)

A man with gray hair in blue hospital scrubs and a white surgical mask hanging tied from his neck smiles widely with bright teeth showing
Dr. Javier Gutierrez

Dr. Gutierrez is originally from Mexico City and attended medical school at Universidad La Salle Medical School. He completed his residency at the University of Miami School of Medicine, Jackson Memorial Hospital and has been Board Certified by the American Board of Obstetrics and Gynecology since 1986. He worked in Mexico City with his father who is also an OBGYN before moving to Summit County in 1998. He says that he dealt with pregnancy at altitude even in Mexico City as a young doctor but now has become even more experienced while practicing at St. Anthony Summit Hospital in Summit County, Colorado. In his career he has delivered more than 7,000 babies.

Gutierrez estimates that about 3% of his patients are visitors to Summit County. Most of these patients are not at full term in their pregnancy and present in the ER with signs of premature labor due to dehydration. Usually, these patients are stabilized and sent to Denver for definitive treatment given St. Anthony Summit Hospital only has a Level 1 nursery (basic newborn care).

The most common conditions that he sees occurring in pregnant women at altitude are pregnancy-induced hypertension (PIH), intrauterine growth restriction (IUGR), and small for gestational age (SGA). Because of this, he says that the main difference of observing pregnancy at altitude is more frequent ultrasounds to monitor the growth of the baby. Luckily, most pregnant women at altitude are very fit and healthy because of the active lifestyle that Summit County encourages. However, some women also have a difficult time restricting their activity level enough to maintain proper growth of the baby. The recommended maximum heart rate during pregnancy is 80% of your maximum heart rate, which can be hard to not exceed in an active pregnant female living at altitude.

Nevertheless, the risk of high altitude pulmonary edema (HAPE), high altitude cerebral edema (HACE), and sleep problems are about the same as in pregnant women not living at altitude. In general, pregnant women past 24 weeks have difficulty sleeping no matter where they live. In addition, if you know you are at high risk for developing HAPE or have a history of HAPE you are just as likely to develop HAPE during your pregnancy as you are not pregnant.

Sleeping with oxygen is recommended and has many benefits for all individuals living at altitude, pregnant women included. However, it likely wouldn’t decrease the number of SGA babies because of the activity level of most individuals as mentioned earlier. A woman’s body increases blood volume, red blood cell count, respiratory rate, and vasodilates blood vessels to accommodate for the growing fetus. This in turn allows the body to compensate well and usually maintain normal oxygen saturation levels at altitude.  But Dr. Gutierrez feels eventually it will be recommended for everyone to sleep with oxygen, most people just don’t want to.

Especially with dehydration, he has seen very high red blood cell concentrations. However, these individuals usually only need rehydration and do not suffer any complications. He has not seen a drastic increase in the number of blood clots in pregnant females at altitude even though they are likely at higher risk. But if a pregnant female who is dehydrated and recently traveled to altitude presents with shortness of breath, he definitely puts HAPE and pulmonary embolism (PE) higher on his list of possible diagnoses than he would not at sea level.

An important and simple recommendation is increasing their fluid intake. At altitude you have more insensible water loss and are likely more physically active, which in turn can lead to faster dehydration causing premature labor. Luckily this complication is easily managed with adequate fluid intake. In addition, if you know you are at high risk for developing HAPE it is recommended that you do not travel to altitude, especially later in your pregnancy.

The baby lives in a hypoxic environment in the womb anyway so there are no known advantages to living at altitude while being pregnant, other than the active and healthy lifestyle Summit County promotes.

One of the most challenging cases Dr. Gutierrez has treated was severe maternal respiratory distress during early third trimester due to HAPE. The most definitive treatment was to transport her to a lower altitude, however, they had to stabilize the mother enough to be able to transfer her and her baby. In addition, Summit County does not have a high level nursery to take care of a very premature baby even if they were able to deliver the baby safely to take stress off the mother’s body. He said it was a delicate balance trying to determine what was best and safest for both the mother and the baby.

Bailie Holst is a second-year Physician Assistant student at Red Rocks Community College in Arvada, CO. Bailie was born in Longmont, Colorado and spent her life in Northern Colorado until moving to Minneapolis, Minnesota for her undergraduate studies at the University of Minnesota. She also spent her life traveling throughout the country competing in gymnastics competitions and eventually earning a full-ride athletic scholarship for gymnastics to the University of Minnesota. She finished her gymnastics career and graduated with a Bachelor’s degree in Physiology in 2017. Prior to PA school she worked as a medical assistant in a sports medicine and rehabilitation office in Colorado for two years. In her free time, Bailie now enjoys golfing, traveling, spending time with family, and playing with her brand-new puppy.

Nocturnal Hypoxia at High Altitude

The long-awaited results for the Ebert Family Clinic study on sleep at altitude were analyzed in collaboration with Colorado Sleep Institute (CSI). Christine Ebert-Santos, MD, MPS and Tara Taylor, FNP organized and conducted the Overnight Pulse Oximeter Study In Healthy Adults at three elevations, with the support of the local mountain community and the American Embassy in La Paz, Bolivia. The purpose of the study was to evaluate nocturnal oxygen saturation levels in populations living at 3800 m (12,467′), 2800 m (9,186′) and 2500 m (8,202′) and determine treatment recommendations for central apnea and hypoxia. Volunteers were recruited by the clinic from residents in the community and current patients, and by the American Embassy nurse practitioner Annette Blakelee. Informed consent was obtained by the clinic staff and providers. Each participant completed a health questionnaire on length of residence at altitude, medical history and possible symptoms related to higher elevations. Blood pressure, height, weight, and BMI were measured and documented at enrollment. Patients enrolled in study sites for routine care had past Hb/Hct added to the questionnaire. The device (pulse oximeter) was dispensed to the participants with instructions for use. The participants wore the device at night during sleep before returning it to the research staff at the clinic. The results were downloaded from a USB device, recorded onto a spreadsheet, and analyzed by a statistician. If the results were concerning for hypoxia, (<89% for over 20% of the study), participants were asked to repeat the test, completely off any substance (e.g., drugs, alcohol). The study also accounted for factors such as years at altitude and percent of life at altitude to assess potential adaptations to the environment and subsequently, changes in oxygen saturation levels. The goal of the study is to inform providers and residents which symptoms are related to altitude or sleep disorders and recommend treatment that will allow them to feel better and be more active, as well as reduce complications from hypoxia, such as pulmonary and systemic hypertension, fatigue, and daytime drowsiness.

Results of the study concluded that years at altitude, percent of life at altitude, gender, and age do not explain the variance of adaptation to altitude, as measured by time <88% oxygen saturation (SpO2) in these data. The only factor statistically significant in adaptation to altitude was body mass index (BMI). This data provides direction for future studies.

P>0.05 is non-significant. This suggests that there is something else besides percent of the life spent at altitude that explains the level of adaptation participants are experiencing.

Overlapping fit lines (colored) and range estimates (gray) means that the groups are not different. Thus gender cannot explain the difference in adaptation responses.

 Tara Taylor FNP had the primary role of reviewing and discussing sleep study results with individuals participating in this study. Tara has worked at the Ebert Family Clinic for over 3 years as a family practitioner, before which she was an intensive care nurse for adults and children for 14 years. She is passionate about sleep issues that occur at high altitude. Tara states that “the most interesting finding was that normal, healthy adults without any comorbidities who are of normal weight and do not have any other medical conditions, had basal oxygen levels <90%, and most had 88-89% basal oxygen. We did see some drops to 85-87% oxygen saturation (SpO2) overnight without any apnea. We checked the length of time spent in different ranges. I found that healthy adults were spending more time below 90% SpO2 than anticipated. We used the index per hour, which gave us a preliminary idea of how many times oxygen increases and decreases.” Based on the results, patients would be notified on any follow up that was needed.

The new Colorado Sleep Institute (CSI) in Frisco will allow patients to receive comprehensive care with more accurate results than can be found at a lower elevation clinic. Dr. Mark Hickey, MD, Board Certified Specialist in Sleep Medicine, and Dr. Ellen Stothard reviewed and interpreted the data collected by Ebert Family Clinic. Dr. Stothard is currently the Research and Development Director at the Colorado Sleep Institute. Her passion lies in conducting sleep research, collecting relevant data, and readily communicating findings, as she believes that good sleep is fundamental for a healthy lifestyle. Dr. Stothard discussed the difference between central versus obstructive sleep apnea and a highly prevalent process called treatment emergent central sleep apnea (TECSA), which is the persistence of central sleep apnea during treatment for obstructive sleep apnea. According to Dr. Stothard, “TECSA is seen when one is treated for obstructive sleep apnea with the continuous positive airway pressure (CPAP), causing a disruption to the central sensing mechanism, resulting in central sleep apnea. Following this phenomenon, patients with obstructive sleep apnea believe that they are resistant to treatment when the CPAP doesn’t improve their symptoms.” These patterns are actually central events which can be helped with decreasing pressure of the CPAP and readjusting air flow. Essentially, CPAP settings should be adjusted based on altitude and elevation, as this is a huge factor influencing nocturnal oxygen saturation levels.

Dr. Stothard has worked with numerous patients receiving CPAP treatment including those at lower altitudes. Since opening her clinic at high altitude, the providers at CSI have noticed that patients tend to feel more fatigue, reporting less relief from treatment with CPAP. Symptoms the patients are experiencing require an individualized approach. “Sleep medicine is so unique,” states Dr. Stothard  “and you have to take the time to tailor the treatment and titrate it to perfection to match the patient’s physiology, tolerance for the air, and whether they wear a nasal mask or full-face mask. We spend a lot of time on those specific things in our clinic.”

Dr. Stothard discussed the influence altitude has on conditions such as obesity, explaining that “BMI is a known risk factor for sleep apnea. Someone with a higher BMI will have a different physiology due to its effect on airway collapsibility. Recommendations to reduce sleep apnea are to maintain a healthy weight, which can improve the success of treatment.” Dr. Stothard also spoke about the role of physical therapy in sleep hygiene and how it can help improve sleep, especially in people who have traumatic brain injuries. “Understanding the way sleep facilitates recovery and repair of the body is crucial” and physical therapists can help bridge that gap. Sleep not only allows for the body to restore and re-energize, but also allows for the toxins to be cleansed out from the brain. Moreover, “while we sleep, there is an increase in the interstitial space in the brain allowing the cerebrospinal fluid to flush out chemicals, such as adenosine.” Excess retention of adenosine can cause sleepiness and grogginess acutely, while chronically, it can cause inflammation, fibrosis, and organ damage.

The Overnight Pulse Oximeter Study In Healthy Adults gives us some interesting preliminary information. The CSI and Ebert Family Clinic will be collaborating on future studies to help us understand sleep at altitude in greater depth. For more information on the high prevalence of central apnea at altitude at all ages and the importance of using oxygen at night for residents 50 and older, see previous blog posts on sleep and interviews with local providers Dr. Craig Perrinjaquet and Dr. Peter Lemis.

Arti Kandalam is a second-year physician assistant student at the Red Rocks Community College Physician Assistant Program in Arvada, CO. Arti was born and raised in Sugar Land, TX and lived there until graduating high school. She then moved to Austin, TX to attend the University of Texas in pursuit of her Bachelors in English degree. Shortly after, she obtained her Masters in Biomedical Sciences at the University of Houston in Victoria. She moved back to Sugar Land, TX, where she worked as a Medical Assistant and Scribe at Texas Pain Centers for 4 years. In her free time, Arti enjoys dancing/teaching Bollywood choreography, biking, and hiking.

Doc Talk: a Californian Interviews South America’s Altitude Experts Dr. Gustavo Zubieta-Calleja & Dr. Natalia Zubieta-Urioste

As a California native, I was unfamiliar with the impact high altitude had on the human body. I had only briefly learned about it in my exercise physiology course during my undergraduate studies. At best, I understood the difference between acclimation and acclimatization, and the advantages of living at high altitude for exercise performance. What I never really understood was how much all that information would mean to me when the next chapter in my life took me to Colorado.

In hindsight, I did everything against the book after moving to Colorado because I wanted to stay active and enjoy as much as I could before school started. I continued my daily workout routines, went whitewater rafting, and had a few drinks. More importantly, I was not hydrating adequately because I didn’t know you could drink straight from the tap. So… what happened? The end of my workout routines was met with dizziness and lightheadedness. On some occasions, I would notice my fingertips turn purple. My sleep would be interrupted by episodes of apnea. Though these symptoms did resolve eventually, they could have been prevented if I had followed a few simple rules.

As a student at Ebert Family Clinic in Frisco, CO at 9000′ alongside high altitude expert Dr. Christine Ebert-Santos, I had the opportunity to learn more about high altitude illness, interviewing Dr. Gustavo Zubieta-Calleja and his daughter Dr. Natalia Zubieta-Urioste from the High Altitude Pulmonary and Pathology Institute (IPPA) in La Paz, Bolivia. Dr. Zubieta has been practicing internal medicine and pulmonology at his father’s high altitude clinic since 1981. During our interview, we discussed their most recent publication Acute Mountain Sickness, High Altitude Pulmonary Edema, and High-Altitude Cerebral Edema: A view from the High Andes. When asked about what inspired him to follow his father’s footsteps, he replied, “My father created the first high altitude clinic in the world and that was a great inspiration to me. He did it with a visionary idea because at the time in 1970, nobody thought about putting a clinic like that out. I was born at home because my father was a physician and he preferred to deliver us. We [me and my siblings] were all delivered at home and then that home became the clinic in 1970. The clinic turned 50 this past year and our father also became our mentor at this clinic.”

The article addresses the two types of adaptation: genetic and physiologic. In his publication, he primarily addresses the physiologic mechanisms that must occur for one to adapt to the hypobaric environment that is high altitude. During my research, however, I found that Tibetans experienced the fastest phenotypically observable evolution in human history partially because their community has spent centuries living at that altitude. When I discussed my findings with Dr. Zubieta, he stated that much still needs to be done to determine if the Andean population has made similar genetic adaptations. He was optimistic about the studies to come as he strongly believes that all organisms must adapt if they want to survive and reproduce at high altitude. According to Dr. Zubieta, change is inevitable. He believes that the energy expenditure from the body’s initial response to the hypobaric environment is too costly forcing  the human body to adapt in a manner that will render it more effective in managing this energy expenditure via metabolism at the mitochondrial level.

We also discussed the different attitudes towards the use of acetazolamide, or Diamox. In the United States, acetazolamide is a diuretic commonly used to prevent the onset of acute mountain sickness. Dr. Ebert Santos highly recommends the use of acetazolamide to prevent acute mountain sickness while Dr. Zubieta and other providers reluctantly use it due to the risk of dehydration. A 125-milligram dose is adequate and unlikely to cause side effects, which Dr. Zubieta said can include fatigue, nausea, vomiting, abdominal pain, and diarrhea. (Most visitors to Colorado taking acetazolamide only experience tingling of the hands and feet and a flat taste to carbonated beverages.) Dr. Zubieta justifies his avoidance of acetazolamide as an “opportunity” to treat the patient’s underlying issues, stating that ascension to high altitude is a testament of one’s cardiovascular fitness and the use of acetazolamide compromises adaptation to high altitude. At the IPPA they have uncovered underlying conditions that explain their patients’ symptoms at altitude and resulted in better health upon returning to sea level.

 The Wilderness Medical Society has established a risk stratification for acute mountain sickness which further supports Dr. Zubieta’s infrequent use of acetazolamide. The society’s 2019 guidelines suggest that individuals with no history of altitude illness and ascending to an elevation no greater than 2,800 meters, and individuals who take more than two days to arrive at an altitude between 2,500 and 3,000 meters are considered low risk and the use of acetazolamide is not recommended. Instead, Dr. Zubieta recommends Ibuprofen and Acetaminophen for headache relief and oxygen in those with persistent symptoms of acute mountain sickness. He also emphasizes that oral hydration can be important in preventing high altitude illnesses.

Overall, Dr. Zubieta’s perspective on high altitude is fascinating. During my master’s program, I learned a systematic way to treat patients using guidelines or criteria backed by years of evidence that helps you, the provider, make an informed decision on a patient’s particular case. Dr. Zubieta reinforced the importance of treating each patient’s case individually to determine the underlying cause, rather than suggesting acetazolamide to everyone who doesn’t want to deal with acute mountain sickness. As for myself, seeing how physicians in other countries approach certain illnesses has definitely made me think twice about how to approach high altitude illness.

To learn more about Dr. Gustavo Zubieta and his clinic, you can visit his website at: https://altitudeclinic.com/

Born and raised in Northern Orange County of California, Michael Le is a second-year physician assistant student at the Red Rocks Community College Physician Assistant Program in Arvada, CO. Michael attended California State Polytechnic University Pomona otherwise known locally as Cal Poly Pomona where he earned his bachelor’s degree in Kinesiology. Shortly after, he worked as an EMT for Lifeline Ambulance, and physical therapy aide and post-anesthesia care unit technician at Fountain Valley Regional Hospital in Fountain Valley, CA. In his free time, Michael likes to cook and breed show rabbits.

High Country Winter Dogs

Dr. Margot Daly DVM, CCRP, CVA, of the Frisco Animal Hospital in Frisco, CO, graduated from the University of California – Davis in 2013, and has worked in general practice, emergency practice, and most recently in specialty practice as a full-time rehabilitation and sports medicine veterinarian. Prior to veterinary school, she studied Sociology at UC Berkeley, and had a career as a professional equestrian, which led to an interest in orthopedics, biomechanics, and physical rehabilitation. Following graduation, she received the Certified Canine Rehabilitation Practitioner designation from the University of Tennessee – Knoxville, and the Certified Veterinary Acupuncturist designation from the Chi Institute in Reddick, Florida. She has been with the Frisco Animal Hospital for a year and a half, and when she is not working, she can be found riding a horse or one of her many bicycles, fostering dogs and kittens, reading books, skiing, or traveling somewhere new!

We interviewed Dr. Daly on her advice for canine high country health, winter dog gear, common winter injuries, and winter activities to participate in with your dog.

One of the most common things to be aware of is canine “weekend warrior syndrome.” Dog owners must be sure their dogs are fit enough to participate in physically intense weekend activities. Many dogs only go out in their yard or take a few short walks during the week and then go on big hikes, back country ski trips, or long mountain bike rides on the weekends. Unfortunately, during the high intensity activity the dog’s adrenaline is high and the dog won’t show signs of fatigue, yet the next day with dog will feel awful and be extremely sore. It is comparable to a human doing cross fit only once per week … [imagine] how he or she would feel the next day. To avoid this phenomenon, ensure your dog is fit enough by practicing 30-60 minutes of moderate exercise at least three times per week, which can include 30 minutes of jogging or 60 minutes of active walking. If your dog is doing less than that during the week, it is important to be thoughtful of what you are asking of your dog or what you are giving them the opportunity to do over the weekend. Unfortunately, a fun weekend can become overly taxing on your dog very quickly.

Signs your dog may have done too much over the weekend include not wanting to go up or down stairs, refusing to jump in and out of the car, or not wanting to get up or down from the couch. Your dog may not necessarily be limping since they are more likely to have general full-body fatigue, aches, and soreness. Your dog should still eat and drink normally, and if they aren’t that is reason to call your vet.  

Winter Clothing & Gear

Booties: Dog clothing can be helpful as dogs can get cold just like humans do during outdoor winter activities. Booties can be advantageous during both summer and winter activities. The best policy is to pay attention to your dog’s behavior to determine how necessary booties are. Some dogs make it clear that they are uncomfortable in the snow and slush by holding their paws high in an alternating fashion, sitting down, or refusing to walk. Some dogs are more sensitive than others and some have a higher tolerance for the cold than others.

Dog booties!

The key to booties is acclimating your dog over a week or so before taking the booties out on an adventure. The best way to do this is to put your new booties on your dog in your house and then give them a treat or play with their favorite toy. This will help reinforce the booties and make them a fun experience for your dog! This may take several days before the dog will tolerate the booties and walk around comfortably in them. Essentially, don’t wait until the morning of the big hike to put the booties on your dog for the first time. Another strategy is to start with lightweight booties made of felt with one Velcro strap. These are a lightweight cheap option and are the same booties sled dogs on the Iditarod use. It is best to buy a few sets of these to start as some will inevitably get lost. If you find that your dog requires something more substantial, Dr. Daly recommends RuffWear boots which have a heavy rubber sole. Beware these booties may cause difficulty for a dog with mobility issues where heavy booties may impair the dog’s ability to walk safely. Custom booties are also an option and are recommended for dogs with atypically shaped feet such as greyhounds. A company called TheraPaw will coordinate with your vet to get measurements of your dog’s feet and make custom booties.

If your dog is totally intolerant of booties but could benefit from them, you can try musher wax. It provides a slightly waterproof barrier between your dog’s paws and the roads. It also helps prevent ice balls in dogs with a lot of feathering on their paws or between their toes. Put the wax on right before your take your dog outside and wipe the dog’s paws as soon as you get home. This can help protect dogs who have a lot of road time to protect them from road salt, sand, and ice chemicals.

Jackets: Dr. Daly confirms that there are dogs that may benefit from a jacket especially when participating in winter hiking or backcountry skiing. If you see your dog shivering, hunching their back, or crouching their neck and shoulders, your dog is likely cold and would benefit from a jacket. When choosing a jacket, it is imperative that you choose a jacket that has a full chest and short sleeves vs one that just has a strap across the chest. This ensures that the snow will slide off the chest and not become trapped against the dog’s skin. It is hard for a dog to overheat in the winter, but it is a good idea to provide layering for your dog. Most importantly, do not choose a cotton fabric, but a fabric that will wick and dry quickly such as fleece, soft shell, or a technical fabric. If your dog’s jacket becomes wet or soaked, it is important to take it off, because a wet jacket is no longer providing warmth and will end up making your dog colder.

Goggles: There are a large number of canine patients with eye problems related to the UV light exposure at high altitude. In particular, pannus, an eye condition exacerbated by UV light, is common in dogs living at high altitude due to more UV exposure and increased UV reflection off snow. This immune-mediated condition affects the cornea and causes pink or grey granular tissue to grow from the lateral cornea toward the medial cornea. It is a type of chronic superficial keratitis that certain breeds, specifically German shepherds, are more prone to. For this reason, goggles are recommended for dogs living at high altitude especially if the dog is a high risk breed or if they are already diagnosed with pannus. Weekend warriors are at a much lower risk of developing pannus and goggles are not as strongly recommended. As with dog booties, dogs must be acclimated to goggles and the goggles reinforced with treats or play time. It is not recommended to try out goggles for the first time out on the mountain. Aim for about a week of acclimation around the house and neighborhood so your dog tolerates the equipment well. Dr. Daly has had good luck with RexSpecs which do not require a vet to measure the dog, but she is always happy to help owners measure their dogs.

Sunscreen: Surprisingly, canine sunburn is rare, even at high altitude. If it does occur, the burn is normally anywhere the dog has thin to no hair or pink to white skin. Most commonly it occurs on the nose and belly, especially if the dog prefers to lounge on its back in the sun. Mineral-based sunscreens with an active ingredient of titanium dioxide, such as California Baby Brand Sunscreen, are recommended. After putting sunscreen or any ointment on a dog’s nose it is a good idea to immediately give him or her a treat or chew toy to avoid the dog licking the ointment right off.

Prevention at High Altitude

The one best thing you can do to make sure your pet stays healthy and happy at altitude is to ensure adequate hydration. Dr. Daly does not recommend supplemental electrolytes but encourages owners not to depend on mountain streams, rivers, lakes, snow, or puddles to provide adequate hydration for active high country dogs. The high country has giardia and leptospirosis in natural water sources. Giardia can cause gastrointestinal symptoms, and leptospirosis can cause liver and kidney failure as well as having the potential to be transmitted to humans. Bring as much water for your dog as you do for yourself. If you bring one liter then also bring one liter for your dog. Signs your dog may be dehydrated include lethargy, decreased appetite, odd behavior, head-shaking, crying out, or barking. Dogs normally tend to drink more water while at altitude, and this behavior is only concerning if the dog has blood in the urine, appears to be in pain while urinating, or is having accidents in the house when the dog was previously housetrained.

Lastly, if you go camping with your dog it is imperative that you bring your dog’s daily medications with you and not skip a day simply because you are camping. Chronic medications can’t be skipped for even one dose.

Common High Altitude Diagnoses

Dr. Daly sees many recreational injuries and ACL tears between February and April. During this time of year, the snow has a crusty top layer with soft snow underneath. This leads to dogs punching through the top layer and injuring themselves when the soft snow underneath gives way. This post-holing causes many ligament strains and tears this time of year. In the beginning of winter when the conditions are predominantly slippery and icy, she sees wrist and toe strains and sprains from dogs trying to grip with their feet.

Another common injury are lacerations from back country skis. Many people enjoy taking their canine companion back country skiing but fail to train the dog to stay behind them while cruising down the slope. As a result, many dogs end up with lacerations from running in front of or beside their owner and making contact with their owner’s skis. This can lead to lacerations on the dog’s lower legs including around their tendons. It is also important to teach your dog to stay behind you if they come mountain biking. Many dogs end up with injuries from running in front of or beside their owner’s mountain bikes.

Head pressing

Acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), re-entry HAPE, or high altitude cerebral edema (HACE) are exceedingly rare in dogs. The only situation which may predispose a dog to breathing problems is one coming from sea level with underlying cardiac or pulmonic pathology, such as heart failure or a pulmonary contusion. When coming from sea level with an older dog or one with an underlying comorbidity, it is recommended to stop in Denver for 2-3 nights to let the dog acclimate to the altitude and resultant lower oxygen concentration. Dogs can be prescribed home oxygen concentrators, but these should only be used under the supervision of a veterinarian as they require a specific home kennel or tubing being sewn into the dog’s nare. If your dog falls into a high risk category, Dr. Daly describes “head pressing” as an alarm sign requiring an emergency call to a local vet. This is described as a dog leaning headfirst into a wall, furniture, or other upright object as though it is using the object to hold its head up.  Other concerning signs include severe lethargy, vomiting or diarrhea that does not resolve within 24 hours, or respiratory distress of any kind.

Strengthening & Exercise

Most dogs will benefit from some degree of core and hind limb strengthening, as well as exercises to improve proprioception, or body awareness. The stronger and more coordinated the dog is, the lower risk of injury, even with high impact activities. Additionally, dogs can benefit from a personalized exercise program based on their confirmation, for example a long back or short legs, and pre-existing injuries. Dr. Daly’s background in sports medicine gives her a unique viewpoint allowing her to assess any dog and provide a program to prevent future and, more importantly, repeat injuries. If an owner is hoping that his or her companion can return to hiking 14ers after a ligament tear, then a home exercise program is imperative. Plans generally require about 20 minutes of treatment averaging three times a week and incorporating everyday activities such as stairs and working the dog on alternative surfaces. This ensures dog owners don’t necessarily have to invest in additional equipment.

Are there any winter dog sports clubs you recommend?

Dr. Daly has found that many types of active dogs enjoy the variety of mushing sports that can be done in the winter. These include everything from single or double dog skijoring, bikejoring, and canicross (which is a version of cross country running with your dog), all the way to dogsledding with two or more dogs. She is a part of the Colorado Mountain Mushers which is a great place to start for anyone interested in exploring these activities. The club consists of retired professional veterans to amateur mushers and is a friendly, welcoming, all-inclusive group with abundant resources and advice. The club usually runs about four events per year (COVID pending) and can help you learn some new ways to connect with your canine companion, Huskies not required!

Courtney Zak is currently in her second year of PA school at Red Rocks Community College in Arvada, CO. She is a member of the class of 2021 graduating in November. She attended the University of North Carolina at Chapel Hill in Chapel Hill, NC for her undergraduate degree in American Studies. She then completed an Occupational Therapy Assistant (OTA) program at Cape Fear Community College in Wilmington, NC. She practiced five years as an OTA working primarily with the geriatric population helping rehab people with various orthopedic injuries, strokes, heart attacks, and general deconditioning. After working up to management, Courtney decided she wanted to gain more medical insight and expand her scope of practice, so she decided to pursue a career as a physician assistant. Courtney now lives in Golden with her husband Jack, three dogs Brooks, Arlo, and Chloe, and her horse, Cannon. She enjoys horseback riding, hiking, paddle boarding, camping, and mountain biking in her free time.

Doc Talk: ALTITUDE AND THE EYES, AN INTERVIEW WITH DR. PAUL COOK, OD

Have you ever wondered why a bag of chips will swell almost to the point of bursting when you travel from a lower elevation?  As the altitude increases  the barometric pressure decreases. The difference between the high pressure inside the bag and the low pressure outside causes the bag to swell (and sometimes burst) to reach equilibrium with the surrounding environment.

The same concept applies to our biological tissue, including our eyes. Luckily there is not normally gas in our eyes, but there are procedures where air bubbles are injected into the eye, such as a vitrectomy: part of the vitreous humor of the eye is replaced with air so that a nearby site has the chance to heal. Common indications include a retinal detachment, macular hole or removal of scar tissue. It’s important to remain at the elevation your ophthalmologist or optometrist indicates because you don’t want your eye to suffer the same fate as a bag of chips!

This was one of many interesting things I learned while speaking with D. Paul Cook, OD and his wife and practice manager Karen Cook at Summit Eye Center on Main Street in beautiful Frisco, CO. The following is my interview with Dr. Cook, Karen Cook, and my preceptor Christine Ebert-Santos, MD, MPS.

How many years have you been practicing optometry in Frisco, CO?

I don’t recall the exact year, but I remember it was the year the Broncos lost the Superbowl.

Dr. Paul Cook at the entrance of Summit Eye Center.

I did a little research and this must have been either the 1986 or 1987 season, as the Broncos lost both of those Superbowls. Fortunately, those Superbowl losses were not a bad omen as Dr. Cook has successfully served the Frisco area every year since.

What conditions do you see commonly here at altitude?

One thing I see commonly here is recurrent corneal abrasions. The classic patient lives at a lower altitude and previously had a corneal abrasion. They received treatment but the abrasion site never completely heals. After arrival in the high country where it’s extremely dry that abrasion site dries up and becomes inflamed.

Usually what I do is give a bandage contact lens to cover up that recurrent corneal abrasion, which usually works, but if it’s extremely painful, we can use amniotic membrane, which is expensive. But it is effective.

The cornea is the outermost layer of the eye (if you don’t count the tear film). A corneal abrasion occurs when any foreign object scrapes the corneal surface. Symptoms include a foreign body sensation, pain, clear discharge, blurry vision and sensitivity to light. A corneal abrasion needs a healthy, moist environment in order to heal. You can see how the dryness that comes along with altitude could lead to a recurrent corneal abrasion.

I also see a fair amount of snow blindness, usually in the spring though.

I suppose it has to do with the sun being higher in the sky and people being out and about hiking. When people are out skiing in the cold winter they wear their goggles, but if it’s spring time and somebody’s hiking they might forget their glasses.

Snow blindness is only one potential cause of a disease called photokeratitis. Other causes are staring at the sun, looking at an arc welder, or catching too many refracted UV rays from surfaces such as sun, water, ice and snow. The pathophysiology for each disease is the same: too many UV rays are focused onto the cornea at one time which causes damage. Symptoms include pain, redness, blurriness, sensitivity to bright light, headache, and occasionally temporary vision loss. Treatment for photokeratitis caused by snow blindness is supportive, but the most important thing is resting your eyes. Try to get into a dark room and avoid anything that makes your eyes uncomfortable. In a few days your cornea should heal.

Prevention  is straightforward: wear sunglasses or ski goggles with adequate sun protection.

Are cataracts a more common condition at altitude?

Oh yes, because of sun exposure and our aging population here. The people of Summit County are so active, which increases their exposure to the damaging rays of the sun. We’re also treating cataracts so much sooner than we used to, so that’s part of what makes it more common.

Do you have any recommendations for healthy aging at altitude as it relates to the eyes?

Karen: Getting your annual eye exam. We always tell patients there are a lot of things we can do to preserve your vision, there’s almost nothing we can do to give it back to you.

So if you live in Frisco, CO and don’t have an optometrist, make sure to see Dr. Paul Cook!

Is blurry vision a common malady in patients that have recently received a LASIK procedure and then ascended to higher elevations?

I have not seen that with LASIK. About 30 years ago though there was a procedure called Radial Keratotomy (RK) that involved a surgeon making radial cuts on the cornea in order to correct nearsightedness. Those patients used to require one pair of glasses for where they lived at lower elevation and one pair of glasses at higher elevation. It’s not a procedure commonly done nowadays but patients that had RK roughly 30 years ago may have that problem.

LASIK stands for Laser Assisted In Situ Keratomileusis. It essentially means that the surgeon will use a laser to reshape the cornea so that the light refracting through it will be appropriately concentrated on the retina. LASIK is faster, cheaper, safer and more effective than RK. It has largely usurped RK for surgical treatment of nearsightedness or farsightedness.

What are some interesting cases you have seen over your years of practice?

I treated a patient that traveled from the Midwest and had a genetic condition called retinitis pigmentosa. Clinically that means the patient had limited peripheral vision at baseline.  He and his wife decided to hike the Colorado Trail. Unfortunately during the hike he developed blurred vision and ended up coming into my office. Turns out he had macular edema and I referred him to an ophthalmologist down in Denver because the altitude was probably the cause of his macular swelling. I called him a few weeks later and his vision had returned to normal.

Another  patient came into the office because his wife had noticed growths on his iris that turned out to be nevi (colloquially known as moles when they’re on the skin). So I dilated his eyes and noticed growths on his retina. I referred him down to oncology in Denver for a biopsy and it turned out to be melanoma. I think they’re closely monitoring that melanoma at this point. It’s uncommon to see cancers of the eye but I see them once every few years.

Dr. Cook performing an eye exam on me.

For my last question, do you have any general recommendations for residents or visitors?

Wear sunglasses, eat your vegetables, eat your fish at least two times per week, keep your cholesterol in check, keep your sugars in check, take breaks from looking at the computer, don’t sleep in your contacts, and see your optometrist once per year.

Seth Selby is a second-year physician assistant student at Des Moines University. He was raised in Eaton, CO and attended Colorado State University with a bachelor’s degree in Health and Exercise Science. Prior to PA school, Seth worked for 3 years as a Cardiovascular Technician at Boulder Community Hospital. In his spare time Seth loves backpacking, hunting, fishing, skiing and astronomy.

Doc Talk: an Interview with Emergency Medicine Physician Dr. Jack Gervais

While doing a clinical rotation with Dr. Chris at the Ebert Family Clinic in Frisco, CO I had the pleasure of interviewing local emergency medicine physician, Dr. Jack Gervais.

To start off, if you don’t mind just telling us about yourself, where you work, and how you got into the ED

Dr. Jack Gervais: I grew up in Summit County and then did my undergrad at the University of Denver, and then medical school at University of Colorado in Denver as well, and then did a three-year residency for emergency medicine in Portland, Maine. Then I came back to Frisco in 2011, so this was my first job out of residency, and I’ve been here ever since. As far as what got me into emergency medicine, it just kind of seemed like a good mix of everything, really, and I like doing procedures but didn’t necessarily want to be a surgeon, and so I kind of gravitated towards that.

What percent of your practice involves tourists?

Dr. Jack Gervais: It depends on the season. Obviously during the higher tourist seasons it goes up, but I would say probably on average maybe 50-60% and then during the heavy winter tourism times it’s probably more like 80%, and fall and spring much less.

Let’s say that there is a visitor in Frisco who brought a pulse oximeter with them. At what point, with either their O2 saturation or their symptoms, would you recommend that they go to the ER or seek oxygen administration?

Dr. Jack Gervais: It really depends primarily on the symptoms. People can be symptomatic with a fairly typical kind of mountain sickness symptoms and have a normal oxygenation. We consider anything above 88-90% acceptable.  We get a lot of patients that come in with an ankle injury and their O2 saturation is 85% and they’re really asymptomatic. 

Certainly, anybody who’s symptomatic we will offer O2 to them even if they have a normal saturation. Anybody around 85-86% if they’re not having symptoms and they’re going home in a day or two, I offer oxygen to them, but I don’t necessarily say “oh you have to be on oxygen ’cause you’re 85%”. Anybody who’s under 80%, I would say absolutely should be on O2 regardless ’cause they’re going to end up getting worse.

Let’s say they’re skiing, they check their oxygen saturation, and it’s 85% but they feel fine. Would you say “keep going and be aware if you develop symptoms”? 

Dr. Jack Gervais: Yeah, I think that’s reasonable. People tend to do worse at night, so someone is 85% when they’re standing in the day, they’re probably in the 80s at night. So, what I’ll often do with people with those kind of borderline sats is offer them oxygen. It’s really easy to get the delivery from the various companies so it’s pretty straightforward, more of a cost issue for some people, but I tell them “use it when you sleep the whole time you’re here”. Probably most tourists would benefit from sleeping on oxygen regardless because you don’t know how low they’re getting at night. I would guess most people are sleeping in the mid 80s and don’t realize it. That leads to the headaches and waking up at night and those sorts of things that we see a lot.

What conditions do you see here at altitude and how commonly, i.e. cases of Acute Mountain Sickness (AMS), HAPE (High Altitude Pulmonary Edema), HACE (High Altitude Cerebral Edema), sleep problems, blood pressure issues, etc.?

Dr. Jack Gervais: Typical AMS would be shortness of breath, headache, and nausea being the most common. Any combination of those in people who recently traveled from lower elevation or when locals come back from as few as 4 days of vacation can be AMS. People reset really quickly after they descend, we see a lot of people who get reentry HAPE. Kids will go down for spring break in Florida and come back and get HAPE.

It’s tough to say exactly what incidences, I would estimate probably 20-25% at least people visiting from lower elevation — and that’s when it’s just semantics, but it’s elevation, not altitude, and everybody says “altitude sickness”. Altitude is your height above the ground used by pilots. Elevation is how high you are above sea level, but anyway we see that all the time. That’s pretty simple, you know, basically treat the symptoms: something for nausea and actually ibuprofen has been studied in comparison to acetazolamide and is essentially as effective at preventing acute mountain sickness. I tell everyone just put yourself on an NSAID as long as there’s no clear contraindications to it.

I see at least 12 patients a month with HAPE, so it’s something we see really commonly.  This year is kind of weird though ’cause we’re not having as much tourism. We see a lot more when a storm comes in ’cause the pressure drops-so that 10% drop in barometric pressure is like going up another 500 feet, and so that will often kind of push people over the edge. Again, we tend to see a lot of people who get worse at night because they sleep with low O2 saturation or they struggle through the night and come in first thing in the morning saying “I didn’t sleep at all last night, I’ve got this terrible headache, I’ve got this cough”.

HACE is fairly rare here, but not impossible at this elevation. It’s certainly seen more in high trekkers on Everest and in South America. I would say at the hospital we probably have maybe 3-4 cases a year.

Sleep problems are super common, a lot of people wake up feeling short of breath, they’re dehydrated, they get headaches and of course everything else people are doing on vacation exacerbates all that. We actually have this joke of the Summit County Syncope Syndrome: visiting from low elevation, hot tub, alcohol, overexertion, and cannabis. If you have 3/5, there is no way that your syncope is a dangerous cause!

I don’t know why people bring their blood pressure monitors on vacation, but we definitely see a rise in baseline blood pressure at higher elevation. They say, “I have a little headache” (it’s probably from their acute mountain sickness), they check their blood pressure and its 160 and they end up in the ER, which they don’t need to be.

There are actually some folks at the altitude research center in Denver [who] have a little publication about it, but I certainly see a lot of first-time seizures or breakthrough seizures in people who have never had a seizure before. I think it’s just that little bit of change in oxygenation to the brain if you have a seizure predisposition. We see a lot of people that either have their first-time seizure, and there’s nothing else going on, or they’re really well controlled at home, come up and have a breakthrough seizure a couple of days in.

 One other thing about HAPE that’s interesting is people will come in and they’re like, “oh I haven’t slept for the last two nights, I feel terrible, I’ve had a splitting headache,” and I assume they’ve had that for 24-72 hours before they actually come in. Which means they’ve been sitting around with [low oxygen] — most of the HAPE we see is certainly below 80%. I presume these people have been walking around with sats in the 70s for 24-48 hours and it’s amazing that they’re fine. If you were walking around with your O2 saturation in the 70s at sea level, you’d be dead! So, it’s not just a hypoxia that kills people when they have respiratory illness, it’s got to be the hypercarbia and acidosis and all the other stuff that goes along with it.

HAPE tends to also settle in around day 2-3, some people get it quickly but most of the people say I felt fine on day one, I skied yesterday, felt a little crummy night 2, and then day 3 they feel terrible, night 3 can’t sleep and they’ve got HAPE.

 It’s interesting to see the nurses check in a patient with an O2 sat of 50% and it is really no big deal, just put him in any room — it’s not like a big STEMI activation or something. We stick them on oxygen and no one freaks out. People freak out on their first shift if they’re new and it took me a good year to kind of get used to that.  

 Often, we don’t really need to do anything if we can fix them with oxygen and determine from history and physical that there’s nothing else going on. But that gets tricky ’cause you always worry all these people traveling and they’ve got a little bloody cough, they’re tachycardic and hypoxic, so trying to figure out who we want to work up for a PE (pulmonary embolism) is probably our biggest conundrum. A lot of people will get a little bit of a troponin bump just from probably that hypoxic constraint on the heart so that can be a little tricky to figure out who needs to go get a cardiac work up.  

What does a classic HAPE patient look like?

Dr. Jack Gervais: A healthy 26-year-old male who’s got the classic story of progressive increase in shortness of breath, feel like there’s fluid in their lungs, a raspy cough, a little pink sputum, and their sat’s 65% and they get better pretty quickly on oxygen.

What is the typical treatment for HAPE?

Dr. Jack Gervais: The treatment for HAPE patients is to put them on high flow oxygen, around 15 liters.  So, with HAPE, patients get inflammation and acute pulmonary hypertension which causes fluid buildup in the lungs. So, oxygen is really good at reversing that. We oxygenate the lungs which opens up those blood vessels, reduces the pulmonary hypertension, and that fluid can start to resorb in the lungs.

The typical HAPE patient is in the emergency department for 1-3 hours depending on how bad they were and how they’re doing on the high flow oxygen. We wean them down, with a goal of getting them on a nasal cannula with 3-4 liters of O2, which is what the O2 concentrators and portable O2 tanks can manage. And if we can keep someone above 90% on 3-4L they go home with an oxygen prescription. I tell those people to be on oxygen for 24 hours and to just rest and see how it goes, see how you feel. If you start feeling bad again you should be on oxygen. Rarely we see patients come back in because they aren’t doing well, and those people who do, we tell them, “OK you’re out, time to go down to Denver until your plane leaves”.

Are there any medications you use to treat high altitude illnesses?

Dr. Jack Gervais: I don’t tend to use a lot of other medicines. If the oxygen works, why bother adding a bunch of side effects from medications. Some providers tend to be a lot more into giving nifedipine, a calcium channel blocker, which does reduce pulmonary hypertension. A lot of them will use dexamethasone, but it doesn’t so much help with the respiratory component it tends to help more with the headache aspect, but the oxygen will often fix that too. Dexamethasone is also the temporizing treatment for HACE, but they need to descend immediately. People will use Acetazolamide (Diamox), but it’s really only effective if you start it 2-3 days before you come up to the higher elevation. Starting it after you’ve already got acute mountain sickness is probably worthless and it’s got some funky side effects that makes anything carbonated taste weird and it’s a diuretic so you’re adding dehydration to someone who’s already a little dehydrated.

I tend to be more of a minimalist, so I treat the symptoms and give oxygen if they need it and pretty much leave it at that. I was just listening to a podcast talking about inhaled vasodilators. Inhaled/nebulized nitroglycerin — it goes directly to the pulmonary vessels as a vasodilator, but you don’t get the systemic vasodilation that you would with nifedipine or oral nitroglycerin. This was talking more for acute exacerbations of chronic pulmonary hypertension among other things, but I have to wonder if that would work for our patients.

I know you mentioned ibuprofen, but are there any other over-the-counter options you might suggest someone try for AMS?

Dr. Jack Gervais: There are a whole bunch of supplements and stuff that claim to help with altitude sickness, they’re just not studied in any real scientific way to know for sure. For me it’s really just treating the symptoms, so I usually use Zofran for the nausea or Phenergan if there’s a contraindication, and then alternating Tylenol and ibuprofen and oxygen if needed. So, nothing else as far as a preventative that I’m aware of. If you kind of get into the naturopathic realm there’s probably a whole bunch of suggestions out there.

Everyone fixates on staying hydrated which is important. You’re losing extra fluid and if you’re used to living in Florida, you’re going to lose A LOT of fluid when you come up to higher elevation because of the dry air. I tell most people to try and double what you would drink at home. Hydration is really most effective with the headache part of it. It doesn’t change whether you’re going to get HAPE or not. 

Oh, and the little oxygen cans you see in the convenience stores … those are garbage! For oxygen to be effective it needs to be on continuously. Even if you puffed on that thing for a minute and could get your O2 saturation up from 85% to 90% it’s going to drop right back down. In the hospital, if you turn the oxygen off, their saturation will be back where it was within minutes, so yeah, those things are just a total waste of money.

What has been your experience with COVID-19? 

Dr. Jack Gervais: Luckily, we have had it much better off than places like New York, LA, and even down in Denver. I think that part of it is that overall, we have a pretty healthy population compared to a lot of the bigger city areas and suburbs. There have been some studies out there suggesting that people living in higher elevations do better with COVID than lower elevations and I don’t know if it’s just ’cause your body and your pulmonary system has adapted in some way that helps you deal with COVID, but we’ve certainly had some perfectly healthy local folks get pretty sick from it. 

When the tourists were gone back in March/April/May it was great because everyone is local and if you had respiratory symptoms it was probably COVID. Now that the tourists are coming back, it’s a lot harder to tell clinically, and the other thing is the x-ray in HAPE and the x-ray in COVID look very much the same.

We had one patient in particular who came in and said, “I got here yesterday, had a positive COVID test 14 days ago,” and of course they thought they were fine to come up to the mountains, and sure enough they were short of breath. The people who are foolishly traveling either with active COVID or on the tail end of it do not adapt very well when they get up to this elevation, but most of them just need some oxygen.

We finally have rapid tests at the hospital, so it makes it much easier to kind of tell people “this is just altitude” or “this is altitude plus COVID” or “this is straight-up COVID”. In the summer when we didn’t have a rapid test, we’d get these people who have the overlapping symptoms that could be either. It’s tough to tell them what they should do as far as self-quarantine and isolation.  Can you travel? Can you go try to ski tomorrow because it was just altitude sickness?  

The treatment for COVID ends up being the same: oxygen if you need it and then actually dexamethasone has shown to be effective for patients with COVID who are requiring oxygen.

Even before COVID we would send patients home on oxygen with pneumonia or URI symptoms fairly routinely, which is really not a thing in other places. If you need oxygen with pneumonia in Portland, ME you’re getting admitted. If I called Dr. Chris and said I’ve got a kid of yours who looks like they’ve got bronchiolitis or a URI or even COVID, their sat’s 85% — the answer is almost always going to be “oh, put them on oxygen and if they are OK on a reasonable amount of oxygen they’re probably OK to go home”.

Do you admit COVID patients to the hospital up here if needed?

Dr. Jack Gervais: It’s been really tricky for us to figure out who we can reasonably admit here versus transfer to Denver. Both need to have a higher level of care and be at lower elevation. We have kept COIVID patients here successfully. The thing is, even if you live up here and are used to the altitude you’ve got a respiratory process and you’re hypoxic as a result, it makes sense that you would probably do better down in Denver and probably have less of an oxygen requirement and hopefully not progress to high flow oxygen. You can get someone on high flow here but then they’re stuck here until they get better or they get intubated to be transferred.

What is the most memorable case that you have seen in the ER related to high altitude?

Dr. Jack Gervais: So, I had a professional snowboarder who had gone back to sea level for the summer and then flew back out here and had a shoulder surgery in Vail and was staying in Summit County. He was a day or two post-op and had probably been back in the mountains for three or four days so kind of fit the time frame to develop altitude sickness, and he’s probably on a muscle relaxant, some opiates, some respiratory depressants. So, this is the very end of the night shift, I had a STEMI going on in the other room and this guy comes in at 84-85%. He didn’t look super sick but needed some oxygen. I’m like, “oh, he probably took too much oxycodone,” and so I throw him on some oxygen while I go back and deal with this STEMI.

 I go back, and he wasn’t any better! He was still at like 86% on high flow oxygen. So, we got a chest x-ray and he had a little bit of fluid here and there, so it looks like probably early HAPE, or potentially pneumonia, but fit with more of an altitude issue exacerbated by his post-op care.  So, we put him on Bipap and he’s not getting any better and now he’s low 80s on Bipap, so we intubate him.

Now he’s getting worse and now he’s dropping his blood pressure. This is over probably an hour, so this guy is sick, and we could not get him oxygenated even on max vent support. We were begging him, and I thought he was going to just die right in front of me. Finally, he dropped his blood pressure more and we’re like “well, maybe he’s septic, maybe he aspirated, and this is pneumonia.” So, we give him norepinephrine, which is a vasopressor, it constricts all the blood vessels to help increase the blood pressure and adds ionotropic support to make the heartbeat stronger. Then his blood pressure finally got better, and his oxygen got better, and he went down to the ICU in Denver and I’m like, “thank God I didn’t kill this guy at the end of a 13 hour night shift”.

So, it turns out — and this is what makes it the most interesting — he had a PFO, patent foramen ovale — so, a hole in his heart. It’s very common, but people tend to not notice because in general, the pressure in the left side of your heart outweighs the pressure in your right significantly so that patent foramen ovale stays closed against the septum.

Like I was saying earlier, HAPE is caused by acute pulmonary hypertension which then raises the pressures on the right side of your heart. So, he blew open his PFO and now had a right to left shunt — so blood from the right side of the heart doesn’t go up through the lungs and oxygenate, it goes straight to the left and goes back out into the body unoxygenated. That’s why everything we did made him worse. When you put someone on Bipap, and especially when you intubate them, you’ve got that positive pressure that increases the intrathoracic pressure, which increases the preload on the heart.

Dr. Chris Ebert-Santos: 30% of the population may have PFO!

Dr. Jack Gervais: Coincidentally, the norepinephrine that I put him on trying to treat as sepsis increased the after load — the arterial resistance, which then increased the pressure on the left side of the heart enough that it was able to squeeze his PFO back down.

Dr. Chris Ebert-Santos: The ironic thing is that it’s so random! All of this altitude stuff is SO random, even people who have had AMS or HAPE or whatever they may never get again. I mean 90% probably never have a recurrence.

Dr. Jack Gervais: Yeah people get really frustrated and say “I’ve been here 10 times before, it can’t be altitude sickness” — that can happen, and it does. People have this myth of like, “I used to live here, I’m fine,” and it’s absolutely false.

Another interesting thing you see at altitude is people with sickle cell trait (so not full-blown sickle cell disease, generally thought to be a harmless and completely asymptomatic condition) will get splenic infarcts when they come up. You almost can’t even find reports of it in the literature, but I probably see 8 or 10 a year. It’s kind of easy to pin down, the person is like, “I just got here, I’ve got this left upper quadrant pain, no trauma” — not much in your left upper quadrant, so most of the time the minute they hit triage you know what’s going on. We treat just like you would any sickle cell crisis: fluids, pain medicine, oxygen.

I know you mentioned the myth about people who have lived here before believing they aren’t able to get mountain sickness, but do you have any other myths that you frequently have to clarify?

Dr. Jack Gervais: The big one we run into is people who are taking acetazolamide wrong and are surprised that they’re having altitude sickness. People start getting symptoms and they call their doctor and they may prescribe it too late and I just tell them, “don’t bother”. 

People who think they’ve got an infection or bronchitis so their doctor back home calls in antibiotics, which they don’t need even if it is bronchitis. Or the people who ignore it for 2-4 days to assume it’s the bronchitis and say “the antibiotics aren’t working, doctor what’s wrong?” Well, your lungs are filling up with fluid! The good news is HAPE tends to be gradually progressive over hours to days, not minutes. Very rarely we see patients who are really actively dying from HAPE. In 10 years I have probably seen hundreds if not 1,000 HAPE patients and I’ve only probably had 2-3 who were really, really hard to fix. Probably 10-20 that I’ve had to put on Bipap and transfer down. I think I’ve maybe only intubated 1-2. People get in trouble if they’re up high — 20,000 feet on Mount Everest, don’t have oxygen, that’s where you’d end up dying with HAPE. 

Dr. Chris Ebert-Santos: And how many die at home?

Dr. Jack Gervais: I would say a handful. I’ve had at least one lady who was camping. Had HAPE-like symptoms and came in dying, she was the one I intubated, and she actually lived. I had a guy camping last summer who sounded like (from what his mom described) altitude-related symptoms, although he was just up from the Front Range. I don’t know what they ever found on him, but he was dead when the paramedics got to him. I would say it’s a handful, but not dozens a year.

Thank you for your time Dr. Gervais. Is there anything more you would like to share about high altitude medicine?

Dr. Jack Gervais: I would say probably anybody with any serious cardiac or pulmonary comorbidities who is going to vacation here should really be on oxygen at least at night. That would prevent a huge number of these problems. I actually see a lot of people (locals) who sleep on oxygen at night even if they’re 40 and healthy and don’t really have any issues and they just sleep much better.

And the other thing is you know, especially the people who have lived up in Leadville for 60 years tend to develop a gradually progressive chronic pulmonary hypertension which adds to blood pressure management issues and so that’s an issue we definitely see. So I tell anybody who has any sort of symptoms and is going to be here for a while, “just buy yourself a (oxygen) concentrator, keep it at your house,” that way when they come up for a week vacation every winter they’ve got it and just sleep with O2 every night and avoid all the hassle. And don’t bring your blood pressure cuff on vacation!!

There’s a cardiologist who works over in Vail, he was really convinced that living at altitude is really bad for your chronic blood pressure issues.

Dr. Chris Ebert-Santos: Our interview with three other high-altitude physicians in primary care and cardiology say their standard is “if you’re 50 and you’ve lived here 10 years and you want to live here for another 10 years you should be sleeping on oxygen.”

Rachel Mader is a second-year physician assistant student at Red Rocks Community College. She was born and raised in Colorado Springs and attended Colorado State University where she graduated with a bachelor’s in biology. Before starting PA school, Rachel worked as a Physical Therapy Aide at CSU Health and Medical Center, a CNA at a nursing home, and a Clinical Assistant at Children’s Hospital in Colorado Springs. In her spare time she enjoys spending time with her family, friends, and pets, and eating at new restaurants.

The Plants We Need Are There: A Naturopathic Approach to Acute Mountain Sickness

Acetazolamide is already known for its success with treating Acute Mountain Sickness (AMS) and helping patients with their transition to higher altitudes, but what other options are available? What about those who don’t want a prescription, that are looking for other alternatives to help them with AMS and being at high altitude?

During my time in Frisco, Colorado (9000’/2743 m) I was fortunate enough to interview two resident Naturopathic Doctors. Mountain River Naturopathic Clinic on Main Street of this little mountain town is a wonderful oasis for anyone in Colorado’s Summit County looking for alternative care and treatment for their mind and body.

Dr. Kimberly Nearpass, ND and Dr. Justin Pollack, ND took the time to educate Dr. Chris Ebert-Santos, my classmate Rachel Mader, and myself about all the naturopathic remedies available for AMS and residents at altitude.

Tell us about Naturopathic medicine and why you picked this path of medicine?

Dr. Kimberly Nearpass: I thought I was going to be an OBGYN and then I did more research. I talked to doctors, midwives and herbalists and found that the Western medicine model didn’t feel right to me. So I thought, “Do I go to medical school and try to operate functionally from the inside or do I find another track?” I did not know about naturopathic medicine until a few years later. I took some time off; I traveled and went to the Peace Corps and then I discovered naturopathic medicine and loved it. I had lived in Ecuador in the rainforest as a naturalist guide so I learned a lot about traditional medicine that way. I learned a lot about traditional medicine when I lived in rural Africa as well. Living in these rural areas and watching the indigenous people — and they certainly use modern medicine — but they did not have a lot of access. Especially in the rainforest, they were using a lot of plants and I was fascinated by that. But I still wanted the medical training. Then I discovered naturopathic school. So, it’s four years of medical school, we get the medical training, but we also have that more holistic, natural, herbal based approach.

What naturopathic remedies are available for acute mountain sickness (AMS)?

Dr. Nearpass: So I will tell you Acli-Mate is our go-to. I’m not tied to this product, a friend of mine, it is her company, she is a naturopathic doctor in Gunnison. She formulated this, she started it out as a high-altitude electrolyte drink. Everybody that comes in our door, we start with this. This stuff works AMAZING. We rarely have to go anywhere else. I think the combination of the electrolytes and that it is hydrating has a great benefit. It helps with the headache and the nausea. For mild to moderate symptoms of AMS it is incredible. What we do is if we have family coming to visit from sea level is we have them start drinking it before they come.

Acli-Mate is found to be highly effective at helping people who are suffering from AMS. The blend includes herbs Ginkgo biloba and Rhodiola, both of which have proven effective in preventing and treating altitude related sickness. Both herbs seem to improve circulation, especially through cerebral vessels, and cellular energy function through improved uptake and utilization of oxygen, reducing toxic brain edema. Ginkgo has also been shown to inhibit platelet clumping, keeping red blood cells evenly dispersed, which improves delivery of oxygen to tissues, while Rhodiola appears to help the body deal with stress.

Nutrients in Acli-Mate: Vitamin C, and many of the B vitamins: thiamin (B1), riboflavin (B2), niacin (B3), pantothene (B5) and cobolamin (B12).

Acli-Mate in a variety of applications.

Have you noticed that when you have patients drink it before they arrive at high altitude, they have a better outcome?

Dr. Nearpass: Yes. And I have a patient who is 70 now and 5-10 years ago she went with some girlfriend to hike Mount Kilimanjaro. She had all her girlfriends take it and emailed me after saying, “We all did great!” And I don’t want to put all my eggs in one basket but this is almost always all we need.

Dr. Justin Pollack: There is something about that blend of Rhodiola, Ginkgo and the B vitamins that seems to work. We’ve had tons of people use it clinically.

Dr. Nearpass: For other options, I think Rhodiola is a good one. It’s interesting to me because Rhodiola grows in Mongolia, it grows in high altitude. One of the things we talk about in herbal medicine is often the plants we need are there. For example, dandelion root grows everywhere and it is good for liver detox and helps with hepatic function. So, it is interesting to me that dandelion is popping up on the side of the highways and in areas that we could probably use a little cleansing and detoxing.

Dr. Chris Ebert-Santos: What about Coca?

Dr. Nearpass: Oh yes! Coca works amazing. It is a plant that grows in the high altitudes of South America and when I was living in Ecuador the folks that live in the Andes drink coca tea all the time. They also take coca leaves and shove a wad in their mouth like chew. While they are doing work, cardiovascular work, they just put it in their mouth and that is their medicine. It gives them more stamina and reduces fatigue. There is not much research on it because you cannot even get it in the states.

Is there a reason you can’t get it here?

Dr. Nearpass: Because it’s the same plant as cocaine. We used to have a homeopathic version of it. Do you know what homeopathic medicine is? You take a remedy and you dilute it until you don’t have any molecules of the original substance but you basically are getting an energetic imprint. For example, Rhus tox, poison ivy, the homeopathic rhus tox is used to treat red itchy inflamed poison ivy type symptoms. But with coca, even homeopathically, the herb is used in concentrated doses to treat high altitude sickness and increase energy and stamina. But because there is such a control over coca, we can’t even get the homeopathic version, which is ridiculous because there is not a single molecule of the plant in the remedy.

Dr. Pollack: When Kim and I were on our honeymoon, we passed through Bolivia and Peru. In Bolivia in la Paz there was a coca museum. It was really fascinating because something around 1,000lbs of coca leaves must be distilled down into 1 gram to make cocaine. When you make tea out of the raw leaves it seems to have the subtle effect of suppressing appetite and allowing people to do better at altitude. Marijuana has a whole stigma around it, even though it has been legalized, and so the research and researchers are stigmatized, yet there are a lot of useful compound coming out of the plant. So, I’m sure that coca is the same, and hopefully somewhere down the line we will be able to use coca leaf for altitude.

Dr. Nearpass: And certainly, coca is the number one herb in the Andes that people use. You can get it everywhere, it’s like black tea down there.

So because coca is not available for your patients, and if you found Acli-Mate was not successful, what would you recommend?

Dr. Nearpass, a woman in a white hoodie, long brunette hair, and a maroon mask, stands in front of a wall of shelves of naturopathic medicine in brown glass jars with black lids at the Backcountry Apothecary in Frisco, CO.
Dr. Kimberly Nearpass

Dr. Nearpass: This is the thing about naturopathic doctors, we look at each individual. If it’s a resident, per se, we are going to draw blood work. We are going to try to figure out what’s going on, what is the underlying issue. Do you have relative anemia? We will run iron but also ferritin. They may have normal blood cells, normal H&H but their ferritin is a 2. One of the things that is tricky about being a naturopathic doctor is, we will be at a party and someone will ask, “Well what do you do for hypertension?” or “What do you do for digestive issues?” We always say we don’t treat symptoms; we don’t treat disease, we treat people. If someone is having recurrent altitude sickness, we are going to look at the individual and look at what is going on. What’s their diet? Are they hydrated enough? Are they drinking too much alcohol? Do they have subclinical hypothyroidism that might affect their metabolism and their ability to adapt when they get here? Might their ferritin levels be really low? And then we would sit down with the patient and say, “Well what are your symptoms? Is nausea the main symptom? Is headache the main symptom?”  And then, what other factors could be contributing to these symptoms? If it’s headache then CoQ10 would be what I would go to.

Dr. Chris Ebert-Santos: And what do you look for on physical exams on residents that are having trouble with altitude?

Dr. Nearpass: On physical exams we are doing the standard physical that you would do but we are also looking at the tongue. I am not a Chinese Medicine doctor but the tongue does give you some insight on what is going on in the digestive tract. If we are seeing inflammation or glossitis or geographic tongue, we are thinking, “Oh, this person may have some underlying digestive issue.” We might look at Arroyo’s sign, it’s a traditional sign when you shine a light on someone’s pupil and most of the time their pupil will constrict, but Arroyo’s sign is both pupils will stay dilated. This is a red light for adrenal issues, for hyper cortisol output or adrenaline output. If someone is in a chronically stressed state, their pupils are going to be dilated all the time. If it looks like someone has chronic stress, it takes you out of the parasympathetic, and so their digestion is going to be weaker. The way we look at it is the body has to prioritize, and there is only so much that one body can do. And I suspect that living at high altitude puts chronic stress on the body. I see this huge lack of libido in the women. I see women in their 20s, 30s, 40s, 50s. But it kind of makes sense right? If the body is chronically stressed, having a baby is a huge energy output for a woman. So, I think we may see the chronic stress impacts of living at high altitude.

Dr. Chris Ebert-Santos: So what do you do for the libido?

Dr. Nearpass: That is one that if I could invent one pill, it would be that one. Libido is really hard, especially in women. Unfortunately, what I see is its one of the first things to go in women and it’s one of the last things to respond. So, my suspicion is that this altitude is another physical stress on our bodies. I think we can see multiple systems being affected by it, maybe not severely but still.

Rachel Mader PA-S: Is there anything for sleep at altitude? I know a lot of people struggle with that.

Dr. Nearpass: Yes, again for us there is no magic bullet. Melatonin is very well known and that can be very helpful for some people, but it sure doesn’t work for everybody.  When patients come in and say, “What do you use for sleep?” I want to take every person back and have a conversation with them. Ask, “Are you having a hard time falling asleep? Are you having a hard time staying asleep? Are you waking up to go to the bathroom?” Right? So, there isn’t a magic bullet that will work for everyone. Breaking it down, I think you could have 50 people with altitude sickness and we’re going to do 50 different things. I mean, I would start with Acli-Mate, but every patient will be different.

Do you think there’s benefit to adding Acli-Mate in combination with an Acetazolamide prescription?

Dr. Nearpass: As far as I know, there’s no issue combining the two. Most people that come to us are usually trying to avoid medication, but what I always say to them in that situation is, “Try this other stuff to see if it helps.” But if it’s someone who had trouble in the past with AMS, I’ll say go to your medical doctor and get the prescription so that you have it if you need it. I think another issue is that people fly here right from Texas. They fly to Denver, they get right on the shuttle, and they drive right up here. If they’ve had trouble in the past, they should drive here and take their time. Spend a couple days in Denver if they have to. That does seem to help people.

Thank you so much Dr. Nearpass. Is there anything else about naturopathic medicine and high altitude you would like to share with us?

Dr. Nearpass: I guess I would say again that from a naturopathic perspective it is really about looking at the individual.

Is there anything that could specifically help with nausea symptoms of AMS?

Dr. Nearpass: Ipecacuanha! Ipecac syrup — which in full doses will make you throw up, so the homeopathic Ipecacuanha we use for nausea — that is one I have actually used quite a bit for people who have that aspect of AMS. It is really good for nausea and pregnancy too.

PA student Hannah Addison with Dr. Pollock, Dr. Nearpass and Dr. Chris in front of the Naturopathic clinic and apothecary in Frisco, CO.

The way I see Healthcare is a full spectrum, and on one end you have the brain surgeons and on the other end you have the Reiki energy healers. Then you have everything in between. I see us sitting in the middle. For patients, the best thing is to be aware of where they belong on that spectrum. I’m not going to replace a brain surgeon, but sometimes a little bit of massage and energy can do the trick. It is so great for us as practitioners to be able to talk and converse with the medical doctors. We’ve been really lucky in this community.

Visit Mountain River Naturopathic Clinic’s website or stop by their shop and clinic: http://www.mountainriverclinic.com

Available research articles on Naturopathic Remedies and AMS:

Zhang DX, Zhang YK, Nie HJ, Zhang RJ, Cui JH, Cheng Y, Wang YH, Xiao ZH, Liu JY, Wang H. [Protective effects of new compound codonopsis tablets against acute mountain sickness]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2010 May;26(2):148-52. Chinese. PMID: 20684264.

Tsai TY, Wang SH, Lee YK, Su YC. Ginkgo biloba extract for prevention of acute mountain sickness: a systematic review and meta-analysis of randomized controlled trials. BMJ Open. 2018;8(8):e022005. Published 2018 Aug 17. doi:10.1136/bmjopen-2018-022005

Gertsch JH, Basnyat B, Johnson EW, Onopa J, Holck PS. Randomised, double blind, placebo-controlled comparison of ginkgo biloba and acetazolamide for prevention of acute mountain sickness among Himalayan trekkers: the prevention of high-altitude illness trial (PHAIT). BMJ. 2004;328(7443):797. doi:10.1136/bmj.38043.501690.7C

Ke T, Wang J, Swenson ER, et al. Effect of acetazolamide and gingko biloba on the human pulmonary vascular response to an acute altitude ascent. High Alt Med Biol. 2013;14(2):162-167. doi:10.1089/ham.2012.1099

Wang J, Xiong X, Xing Y, et al. Chinese herbal medicine for acute mountain sickness: a systematic review of randomized controlled trials. Evid Based Complement Alternat Med. 2013;2013:732562. doi:10.1155/2013/732562

Lee SY, Li MH, Shi LS, Chu H, Ho CW, Chang TC. Rhodiola crenulata Extract Alleviates Hypoxic Pulmonary Edema in Rats. Evid Based Complement Alternat Med. 2013;2013:718739. doi:10.1155/2013/718739

Hannah Addison, PA-S

Hannah Addison (she, her, hers) is a second-year physician assistant student at Red Rocks Community College Physician Assistant Program in Arvada Colorado. Hannah was born and raised in the South Denver area of Colorado. She spent four years getting her bachelor’s in biomedical science at Colorado State University in Fort Collins, CO where she decided her life career goal was to become a PA. After graduating and while applying for PA programs, Hannah worked at Littleton Adventist Hospital of Centura as a CNA, Telemetry Technician and Unit Clerk. In her free time, Hannah enjoys hiking and discovering all the delicious food and drink Colorado has to offer.

COVID in the Mountains: What Works?

As the nation experiences its second, and by far more significant, increase in COVID-19 cases, visitors continue to flock to the Colorado Rocky Mountain region, while advisories from the CDC and government officials across the world continue urging people to stay isolated and home for the holidays. Unlike the Northern Mariana Islands or New Zealand, where physical distancing, the use of masks, travel bans and mandatory quarantines have allowed these island nations to maintain zero community spread, Colorado remains open to the potentially millions of travelers it sees every Winter season, and with far fewer mandates to control infection.

Although the beginning of the pandemic saw facilities managing to protect their staff with protective equipment and protocols, during this dramatic second wave of reported cases, we are seeing an increase in cases among essential health care workers. And with the regular flu season well underway, it seems more critical than ever that we do everything we can to limit exposure.

Ebert Family Clinic, in the heart of Summit County, Colorado, surrounded by world-class ski resorts drawing visitors from all over the world, has successfully managed to avoid infection among all its staff, in spite of continuing to serve its patient population since the initial lockdown this past March.

How?

“First of all, we kept our door locked. You can only come in one at a time, we meet you at the door, screen your temperature, ask if you have any symptoms; we screen when you make an appointment and make sure if anyone in your household is sick, you reschedule your appointment. If so, we made you a telehealth appointment,” says pediatrician and president Christine Ebert-Santos, MD, MPS.

And the telehealth appointments have been a success all year, saving a lot of travel and risk of exposure, making primary health care even more accessible.

Even now, Ebert Family Clinic’s pandemic protocol hasn’t changed. “But just as importantly, all of our employees are maintaining a bubble with close contacts,” adds Dr. Chris.

Operations weren’t always smooth: “Two times, when someone close to a staff member, like in our family, was sick, we stayed home,” says The Doc about having to close the clinic. I stayed home until [my husband’s] test was negative, [our nurse practitioner,] Tara stayed home until her husband’s test was negative; until we knew we didn’t have COVID. We based the risk of COVID on the standard that is described of having been within six feet of an infected person in a closed space.”

Is the vaccine going to change protocols?

“The vaccine isn’t going to change anything. The announcement from Public Health today tells exactly how many doses. That’s a drop in the bucket. What’s that when we have 30,000 residents and 90,000 visitors? It’s going to be six to nine months before we see any protection from this vaccine,” Dr. Chris confirms.

“Essential workers all have their protocols, and they’re just as important as ever. [If you can’t work] — all the parents who have to stay home with their kids, or the restaurant servers who are laid off — I’m hoping that the people who are doing well in our community can continue to help those who are suffering. There is a big sector of our community, like real estate or repairs or construction workers who have been able to continue working through this pandemic. I think [these people who are out of work] are getting help from the FIRC or applying for rent assistance. I haven’t had anyone say that they’re really struggling. And we conduct social welfare interviews, “Do you feel safe? Do you have food?” We’re doing anxiety and depression screenings on everybody. And there is a high level of anxiety among all ages. 

“We had a meeting with Heart-Centered Counseling, and now we’re plugged in with them. We have their brochures, and we’ve just signed care coordination to connect people with providers [who can help in this situation].”

Dr. Chris encourages everyone in the community to reach out with their needs. Ebert Family Clinic and other health care institutions have done very well maintaining a cohesive network of resources for everyone in search of financial, physical, mental, and emotional assistance.

Feel free to inquire about appointments or referrals to local resources at info@ebertfamilyclinic.com, or call the clinic at (970) 668-1616.

Dr. Chris with her granddaughter, comfy-cozy.

“Everybody enjoy their Christmas Zoom with their relatives. As for us, we are having a small family Christmas with six of us who work and live together, and we’re all wearing hoodie-footie flannel jammies.”

Happy Holidays from Dr. Chris, Ebert Family Clinic, and highaltitudehealth.com!

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.