Category Archives: Backpacking

When Altitude gets High, does Stroke get higher?

Does altitude increase or decrease risk of strokes? As one review put it, “Due to limited literature, lack of large series, and controlled studies, the understanding of stroke at high altitude is still sketchy and incomplete”. What is clear is that stroke at high altitude can often be misdiagnosed (or underdiagnosed), due to the similarity of initial presentation with high altitude cerebral edema (HACE). Both conditions present with imbalance or ataxia, and both can present with focal neurological deficits.  There are few large urban populations at high altitude (Addis Ababa in Ethiopia is 7,726 ft), so medical providers have fewer resources.  Without the ability to perform neuroimaging with a CT scan or MRI in a timely manner a diagnosis of HACE vs. stroke could be uncertain. HACE often causes global cerebral dysfunction, differentiating it from an early stroke before the onset of focal symptoms can and often does prove challenging. 

While the prevalence of strictly hemorrhagic and ischemic strokes at high altitude remains murky, it is known that exposure to high altitude can result in conditions such as TIA, cerebral venous thrombosis (CVT), seizures, and cranial nerve palsies. Most of the research that has been done on strokes is focused on “moderate” and “high” altitudes, as opposed to “very high” or “extremely high” altitudes. As such, there is very little research on populations living at 3500m or higher. There was at least one tangible piece of evidence indicating that the higher the elevation, the earlier the mean onset of stroke – Dhiman et al. (2018) found that at an elevation of 2,000m, the mean age of onset of stroke was 62 years. The age decreased to a mean of 57.9 years at 2,200m in another study (Mahajan et al. (2004)). Yet another study (Razdan et al. (1989)) found 10.9% of the patients in their sample suffered strokes aged < 40, though this was at an altitude of only 1,530m. Some reports suggest higher stroke prevalence at higher altitudes, and at a strikingly young age – between age 20 and age 45.

Student presentation on stroke at altitude at Colorado Medical Society meeting 2022

There have been mixed results on the effect that altitude has on strokes. One systematic review study found 10 studies displaying an increase in stroke prevalence with higher altitude, 5 other studies showing that altitude was actually protective against stroke, and 2 studies in which the results were ambiguous. This study and other sources alluded to the fact that poorer stroke outcomes at higher altitude may be due to polycythemia and increased viscosity of blood. Specifically, Ortiz-Prado et. al noted that “living in high-altitude regions (>2500m) increases the risk of developing thrombosis through hypoxia-driven polycythaemia which leads to a hypercoagulation unbalance”, which was associated with increased risk for stroke. Ortiz-Prado et. al noted that most of their info came from “very few cross-sectional analyses”. These analyses did find “a significant association between living in high-altitude regions and having a greater risk of developing stroke, especially among younger populations”. When the effects of altitude on stroke were broken down by race (Gerken, Huber, Barron, & Zapata, 2022) it was found to be protective in some populations (Whites, African Americans), but detrimental in other populations (Hispanics, Asian-Pacific, and American-Indian). Going back to the work of Ortiz-Prado et. al, altitude increased the risk of stroke at elevations above 3500m, when the time spent at this elevation was at least 28 days, and more so in younger persons (below the age of 45). At lower elevations, between 1500m and 3500m, increased / easier acclimatization and adaptation to hypoxia seemed to offer protective effects against the risk of stroke. Chronic exposure to hypoxia at high altitude triggers adaptive / compensatory mechanisms, such as higher pulmonary arterial flow and improved oxygen diffusing capacity. Ortiz-Prado et. al concluded that a window of ideal elevation seems to exist – below an altitude of 2000m the adaptive mechanisms do not seem to be sufficient to yield a protective effect – however, above 3500m, adaptive mechanisms may actually become maladaptive (excessive polycythemia & blood stasis), yielding a higher risk for stroke. A lack of any adaptation (i.e. in altitude naïve persons) was even more detrimental at such high altitudes, with the authors concluding that “above 3500–4000m, the risk of developing stroke increases, especially if the exposure is acute among non-adapted populations” (Ortiz-Prado et. al, 2022).

Strokes are more common in males compared to females, and this held true at altitudes of 3380m, 4000m, and 4572m. In addition to the standard vascular risk factors such as hypertension, smoking, and diabetes, the higher incidence of polycythemia in persons living at high altitude is thought to play a role. One study (Jha et al. (2002)) found that 75% of the patients in their sample who had suffered strokes had some form of polycythemia – this was at an altitude of 4270m. (Dr. Christine Ebert-Santos of Ebert Family Clinic in Frisco, Colorado at 2743m suspects everyone who lives at altitude has polyerythrocythemia as more accurately described by Dr. Gustavo Zubieta-Calleja of La Paz, Bolivia at 3625m.)

Only about 2% of the world’s population resides at what is considered “high altitude”. Given the current world population (over 8 billion, 5 million), that is still over 160,100,000 people. The sheer number of people that may be at increased risk of stroke is all the more reason for us to act, and act soon, to get more research done. This is further exemplified by the fact that “cerebrovascular events or stroke is the second leading cause of death worldwide, affecting more than 16 million people each year” (Ortiz-Prado et. al). Guidelines need to be implemented to assist in the diagnosis and treatment of stroke at high altitude, to help differentiate it from related conditions such as HACE, giving patients the standard of care that they need and deserve. While a fascinating topic, stroke seems to be delegated to the sidelines in the mountains, cast aside by culprits such as HAPE, HACE, altitude sickness, and hypoxia. More research, more resources, and more funding need to be funneled into understanding stroke at higher altitudes. Overall, it is clear living at or even exposure to higher altitudes can result in a multitude of neurological symptoms, and that a higher incidence of stroke may yet be one of them.

References

Maryam J. Syed, Ismail A. Khatri, Wasim Alamgir, and Mohammad Wasay. Stroke at Moderate and High Altitude. High Altitude Medicine & Biology.Mar 2022.1-7. http://doi.org.mwu.idm.oclc.org/10.1089/ham.2021.0043

Current World Population – https://www.worldometers.info/world-population/ 

Ortiz-Prado E, Cordovez SP, Vasconez E, Viscor G, Roderick P. Chronic high-altitude exposure and the epidemiology of ischaemic stroke: a systematic review. BMJ Open. 2022;12(4):e051777. Published 2022 Apr 29. doi:10.1136/bmjopen-2021-051777

Gerken, Jacob (MS), Huber, Nathan (MS), Barron, Ileana (MD, MPH-S), Zapata, Isain (PhD). “Influence of Elevation of Stroke and Cardiovascular Outcomes”. Poster presented at a conference in Colorado, in 2022.

Links

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058702/ https://www-liebertpub-com.mwu.idm.oclc.org/doi/full/10.1089/ham.2021.0043

Born in Salt Lake City, Utah, Piotr Poczwardowski has also lived in Upstate New York, Florida, and Colorado (where he spent the 13 years prior to moving to Glendale for PA school). While attending the University of Denver, he volunteered at a nearby hospital Emergency Department, and also participated in a study abroad program in Italy. After earning a degree in Psychology, he worked as both a Primary Care Medical Scribe and Neurology MA. His main hobbies include skiing, watching movies, hiking, swimming, playing video games, reading, and playing ping pong. Piotr has also volunteered at the Sky Ridge Medical Center Emergency Department and secured a job as a Primary Care Medical Scribe after graduating from the University of Denver in 2018. Piotr is now attending Midwestern University’s PA program in Glendale, AZ.

High-Altitude Pulmonary Edema is not just for tourists

HAPE can affect long term locals too. There is no specific test to diagnosis HAPE leading to delayed treatment or improper treatment, including death.

HAPE is defined as fluid accumulation in the lungs when an individual spends about 48 hours at elevations of 8,200 feet or higher. This can occur when 1) tourists who are not accumulated to high altitudes appropriately 2) locals who re-enter high altitude after being at lower elevation for a period of time or 3) long term residents who develop an illness.

What are the signs and symptoms you ask? Exhaustion, dyspnea on exertion, productive cough, tachypnea, tachycardia, low oxygen saturation levels, and crackles upon lung assessments are the most common to be seen. These are very generic symptoms and resemble many other diseases, such as pneumonia and asthma, leading to misdiagnosis and improper treatment.

How is HAPE treated?

The answer is simple, oxygen. The body is being deprived of oxygen and is unable to feed our cells. By giving oxygen (either through an artificial source or returning to lower elevation) and allowing the body to rest, the body is able to meet its demand for oxygen and symptoms resolve. If one receives oxygen and symptoms do not improve, there is most likely an underlying cause that is contributing to the symptoms unrelated to HAPE.

A pulse oximeter is the easiest way that one can monitor their oxygen levels at home. This device can be purchased over the counter, relatively inexpensive, and easy to use. By placing the pulse oximeter on one’s finger, the device will read the individual’s oxygen level which should be greater than 90% (when at altitude). The heart rate will also be recorded which tends to be between 60-100 beats per minute when at rest for adults.

References

A new mechanism to prevent pulmonary edema in severe infections. Lung Disease News. (n.d.). Retrieved September 2, 2022, from https://lungdiseasenews.com/2015/01/14/researchers-discover-a-new-mechanism-to-prevent-pulmonary-edema-in-severe-infections/

Bhattarai, A., Acharya, S., Yadav, J. K., & Wilkes, M. (2019). Delayed-onset high altitude pulmonary edema: A case report. Wilderness & Environmental Medicine, 30(1), 90–92. https://doi.org/10.1016/j.wem.2018.11.002

Fixler, K. (2017, October 12). Colorado doctor: Health effects of living in mountains unknown to medical establishment. SummitDaily.com. Retrieved September 2, 2022, from https://www.summitdaily.com/news/summit-county-doctor-makes-a-case-for-high-altitude-disorder-that-affects-even-the-acclimated/

Lost, Stranded, and Hungry in the Mountains of Western Colorado? A Mini Guide to Edible Plants

From backpacking and camping to skiing and snowboarding, there are plenty of activities outdoors in the Colorado high country. If you find yourself wandering around and lost without food in the mountains, there are several wild plants that you can eat. 

However, before you consume the delectable greens, there are a few precautions to take.

Moose shopping
  • Do not eat any wild plants unless you can positively identify them. There are iOS and Android apps that you can download prior to your hike to help distinguish plants, such as PictureThis and NatureID. 
  • Be aware of environmental factors such as pollution or animal waste. Avoid popular wild animal gathering areas.
  • Make sure you’re not allergic to the plant by rubbing it against your skin and observing for a reaction. If so, do not eat the plant. Before ingesting a large quantity, eat a small amount and check for a reaction. 

It may be difficult to cook if you did not come prepared with a portable stove, pots, and water, which could limit ways to enjoy vegetation. Here is a list of edible plants, how to identify them, where can they be found, and which part you can eat.

Wild plants

Dandelions (Taraxacum officinale): yellow ray florets that spread outward from center with toothy, deep-notched, hairless basal leaves and hollow stems. They can be found everywhere and anywhere. Every part of the dandelion plant is edible including the leaves and roots.

Yellow-green hemispheres bud in a bunch from green stems with pine needle-like leaves.

Pineapple Weed/ Wild Chamomile (Matricaria discoidea): the flower heads are cone-shaped and yellowish-green and do not have petals. Often found near walking paths and roadsides, harvest away from disturbed, polluted areas. If you’re feeling anxious about being lost, pineapple weed promotes  relaxation and sleep and serves as a  digestive aid.

Fireweed (Epilobium angustifolium): vibrant fuchsia flowers. Grows in disturbed areas and near recent burn zones. Eat the leaves when they are young as  adult leaves can stupefy you. Young shoot tips and roots are also edible. 

Wild onions (Allium cernuum): look for pink, lavender to white flowers with a strong scent of onion. They grow in the subalpine terrain and are found on moist hillsides and meadows. Caution: do not confuse with death camas. If it doesn’t smell like an onion and has pink flowers, it is not likely an onion.

Cattails (Typha latifolia or Typha angustifolia): typically 5-10 feet tall. Mature flower stalks resemble the tail of a cat. Grow by creek, river, ponds, and lakes. This whole plant is edible, from the top to the roots. Select from pollution-free areas as it is known to absorb toxins in the surrounding water.

Wild berries:

Wild strawberries (Fragaria virginiana): they are tiny compared to  store-bought. Can be identified by their blue-green leaves; small cluster of white flowers with a yellow center; and slightly hairy, long and slender red stems.

Huckleberries (Vaccinium spp): They grow in the high mountain acidic soil and flourish in the forest grounds underneath small, oval-shaped, pointed leaves. They resemble blueberries and have a distinguishable “crown” structure at the bottom of the berry. They can be red, maroon, dark blue, powder-blue, or purple-blue to almost black, and they range from translucent to opaque.

Deep blue berries stand out against bright red and green, waxy leaves.

Oregon grapes (Mahonia aquifolium): powder-blue berries, resembling juniper berries or blueberries, with spiny leaves similar to hollies that may have reddish tints.

Fun fact: The roots and bark of the plant contain a compound called berberine. Berberine has antimicrobial, antiviral, antifungal, and antibiotic properties.

Mushrooms

Brown whole and halved mushrooms lie on a green table with ridged, sponge-looking caps.

True morels (Morchella spp.): cone-shaped top with lots of deep crevices resembling a sponge. They will be hollow inside. A false morel will have a similar appearance on the outside but will not be hollow on the inside and are toxic. Morels are commonly found at the edge of forested areas where ash, aspen, elm, and oak trees live. Dead trees (forest wildfires) and old apple orchards are prime spots for morels.

Short, stubby mushrooms with white stems and brown camps stand in a row growing over grass.

Porcini (Boletus edulis): brown-capped mushrooms with thick, white stalks. Found at  high elevations of 10,500 and 11,200 ft in  areas with monsoon rains and sustained summer heat.

There are many more edible plants, flowers, berries, and mushrooms in the mountains. These are just 10 that can be easily identifiable and common in the Western Colorado landscapes. I recommend trying out the apps listed above and reading “Wild Edible Plants of Colorado” by Charles W. Kane, which includes 58 plants from various regions, each with details of use and preparation. Hopefully this post made you feel more prepared for your next adventure. 

Resources:

Davis, E., 2022. Fall plant tour: Frisco, CO | Wild Food Girl. [online] Wildfoodgirl.com. Available at: <https://wildfoodgirl.com/2012/eleven-edible-wild-plants-from-frisco-trailhead/> [Accessed 10 July 2022].

McGuire, P., 2022. 8 Delicious Foods to Forage in Colorado | Wild Berries…. [online] Uncovercolorado.com. Available at: <https://www.uncovercolorado.com/foraging-for-food-in-colorado/> [Accessed 10 July2022].

Rmhp.org. 2022. Edible Plants On The Western Slope | RMHP Blog. [online] Available at: <https://www.rmhp.org/blog/2020/march/foraging-for-edible-plants> [Accessed 10 July 2022].

Lifescapecolorado.com. 2022. [online] Available at: <https://lifescapecolorado.com/2014/01/edible-plants-of-colorado/> [Accessed 10 July 2022].

Pfaf.org. 2022. Plant Search Result. [online] Available at: <https://pfaf.org/user/DatabaseSearhResult.aspx> [Accessed 10 July 2022].

Cindy Hinh is a second-year Physician Assistant student at Red Rocks Community College in Arvada, CO. She grew up in southern Louisiana and received her undergraduate degree in Biology from Louisiana State University. Prior to PA school, she was a medical scribe in the emergency department and an urgent care tech. In her free time, she enjoys baking, cooking, going on food adventures, hiking, and spending time with family and friends.

After 21 Years of Hiking at Altitude I Had to Call Rescue

Another Lesson on High Altitude Health and Safety

Wild animals, storms, avalanches, cold, high altitude pulmonary edema or cerebral edema, falls, fires and injuries are the most common dangers in the mountains. I’ve climbed 19 different mountains in Colorado over 14,000′, and some of them more than once, making for 28 successful ascents. But I called Summit County Search and Rescue Saturday for something I was not expecting: deep wet snow that trapped me less than 2 miles from the trailhead.

A colorful map of lines in red, green and white depicting trails through various mountain terrain.
Summit County trail map

It was a bright, warm day — I had even left my hand warmers at home. My plan was to hike from Miners Creek trailhead in Frisco to Gold Hill Trailhead north of Breckenridge which is about a 6- or 7-mile trip one way. I had hiked from both ends in previous weeks and saw the turn-off had snow and no tracks. I attached my snowshoes to my backpack with plans to turn up towards Gold Hill if there were tracks, and there were.

After 4 miles I was out of the forest on top with gorgeous 360˚ views of mountains. I no longer saw the trail markers or tracks so set out across the open space with my snowshoes sinking into the snow every 10 to 20 feet. The trail maps and GPS on my phone were sketchy, only showing I was very near the Colorado Trail. I turned down a logging road to get out of the wind thinking the snow would be packed. I could see several open areas that I thought would take me to the familiar trails to Gold Hill.

After an hour sinking into deep snow I noticed I had only one snowshoe. I backtracked 100 feet following the tracks to find it, dug at several spots where I had sunk the deepest but never found it. I went back towards the Colorado Trail but could not progress, having to dig my boot out of deep snow several times.  I tried to backtrack in my footsteps but couldn’t get far. I had now covered a mile in an hour and a half, my phone showing I was only 48 minutes from the Gold Hill trailhead.

So I called 911, thinking they could drive a snowmobile up to get me.  Bad news: the vehicle would just sink the same way I was. The 911 operator knew me and the Summit County Search & Rescue mission coordinator Mark Svenson was in touch several times as I waited from 3:17 until about 6 pm when the crew arrived with skis and extra snowshoes. My Blue Heeler Isa and I stayed within one foot of a small pine tree where we found firm footing after rolling through the deep, soft snow. Luckily the sun kept us warm until 5 pm, and I had food and water. My gloves and boots were soaked so my feet were very cold and I tried to keep Isa lying over my legs or feet.  I had a plastic rain shield extension that I could pull out and sit on in a pocket of the backpack that one of my students had gifted me.

The rescuers had water, snacks, dry socks, dry gloves, gators and snowshoes. They had packed down the trail but there were still times we post-holed on the way down. We arrived at the rescue vehicle as darkness fell. Special Operations Sheriff SJ Hamit waited with Mark and other SCSR staff to welcome us. One of the rescuers told me how happy he was that I was still smiling when they arrived!

Summit County Search & Rescue team, Sheriff Hamit on the left, Dr. Chris far right.

What did I learn? Stay out of deep, wet snow even if it means going back the long way. Bring extra socks and gloves. Buy gators.

I was not afraid because I knew they were coming before dark. I do feel exhilarated that I was able to do such a challenging hike without any pain or blisters, that my knees were strong enough to extract my feet from the deep snow so many times, and that Isa was with me to warn if any animals were near and announce when the rescuers arrived.

Christine Ebert-Santos, MD, MPS is the founding physician and president of Ebert Family Clinic in Frisco, Colorado, where she leads high altitude research in addition to running a full-time family practice. Isa is a two-year-old blue heeler and Dr. Chris’s familiar and guardian angel.

Return to High Altitude after Recovery from Coronavirus Disease 2019

Andrew M. Luks and Colin K. Grissom

https://www.colorado.com/activities/colorado-hiking

Prior to COVID-19, I would hike the beautiful mountains of Colorado known as 14ers, a name given to these mountains for being over 14,000 ft. I, like most high-altitude travelers faced the more common concerns associated with hiking such as acute mountain sickness (AMS), high altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE). With the increase in high-altitude travel, I wondered if there are any new precautions that we should consider before resuming the activities that we love.

The purpose of this article is to highlight the recommendations for patients who wish to return to high-altitude travel after a COVID infection. Not everyone needs an evaluation after a COVID infection. The recommendations noted in this article are based on the duration and severity of the illness of each individual person.

So, who should receive an evaluation before high-altitude travel?

  1. Individuals with symptoms after 2 weeks of a positive COVID-19 test without hospitalization,
  2. Individuals with symptoms after 2 weeks after hospital discharge,
  3. Anyone who required care in the intensive care unit (ICU), and
  4. Anyone who developed myocarditis or thromboembolic events. The recommendations are to undergo pulse oximetry at rest and with activity, spirometry, lung volumes, and diffusion capacity for carbon monoxide(DLCO), chest imaging, electrocardiography (EKG), B-type natriuretic peptide, high sensitivity cardiac troponin (hsTn), and echocardiography.

It is expected that people with lower oxygen levels (hypoxemia) at rest or with exertion in lower elevations will experience greater hypoxemia with ascent to high altitude. It has been shown that ascent to high altitude causes a decrease in barometric pressure leading to a decrease in ambient and inspired partial pressure of oxygen. The decrease in partial pressure of oxygen in alveoli (PaO2) will trigger vasoconstriction of pulmonary arterioles that slows the rate of oxygen diffusion and activates chemoreceptors that increase minute ventilation from hypoxia. However, it is still unclear whether people with low oxygen levels at low elevations are at greater risk for acute altitude illness after ascent. The recommendation is to monitor pulse oximetry after arrival of high altitude.

Individuals with abnormal lung function tests don’t have to avoid high altitude travel as previous studies have shown that patients with COPD with abnormal lung functions tolerate exposure. Furthermore, in people with mild to severe COVID-19 symptoms, the lung mechanic markers such as forced expiratory volume (FEV1), forced vital capacity (FVC) and total lung capacity (TLC) normalize in up to 150 days of infection.  However, if individuals have severe limitations with exercise capacity, they should monitor their oxygen levels with pulse oximetry after ascent. Reduction in exercise capacity is possible after COVID infection and depends on the severity of the illness. Blokland et al., 2020 has shown that previously intubated individuals had a median VO2 max of 15ml/kg per min (average male 35 to 40 and average female 27 and 30), roughly 57% predicted immediately after hospitalization. 

In acute hypoxia, the heart rate increases, which leads to an increase in cardiac output. Individuals with reduced ventricular function from COVID infection do not have to avoid travel. Previous research has shown that individuals with heart failure can tolerate exercise with hypoxia. Moreover, data has shown that individuals with COVID infection maintain preserved left ventricular function and only 3% show a reduced ejection fraction. Individuals with abnormal EKG rhythms and ischemia should be referred to cardiology.  If high sensitivity troponin was abnormally elevated, this would require evaluation for myocarditis with a cardiac MRI. Knight et al., (2020), found that 45% of patients with unexplained elevations of high-sensitivity troponin were found to have myocarditis during hospitalization. It is still unclear how long these abnormalities will last and how it will affect people.

 A concerning finding on ECHO is pulmonary hypertension, as previous research has shown an increased risk in developing HAPE. A study reported that 10% of patients hospitalized for COVID without mechanical ventilation had right ventricular dysfunction for over 2 months. Several studies reported that 7-10% of individuals may have pulmonary hypertension after COVID infection. A vasodilating drug such as nifedipine can be given prophylactically if pulmonary hypertension is unrelated to left heart dysfunction but nifedipine can worsen hypoxemia.

The recommendation for patients who developed myocarditis from a COVID infection is to have an ECHO, Holter monitor, and exercise EKG 3-6 months after illness. Travel can resume after a normal ECHO, no arrhythmias on exercise EKG, and after inflammatory markers (ESR and/or CRP) have normalized. Previous studies suspected that areas with low atmospheric pressures (e.g., high-altitude) that induce hypoxia have increased risk for clot formation. However, this suspicion has never been firmly established; therefore there is no reason to believe that high-altitude will increase the risk for clot formation in individuals who developed an arterial or venous clot from COVID infection.

A few things to consider before planning a high-altitude excursion includes planning to visit areas with access to medical resources or the ability to descend rapidly. If you are new to high altitude, it is recommended to slow the ascent rate. Traveling to high elevations (>4000m) should be avoided until tolerance has developed with moderate elevations (2000-3000m). A more gradual return to physical activity at high altitude is recommended rather than immediate resumption of heavy exertion. As the pandemic subsides and with increase in mountain travel, more research will develop that can better address these risks.

Good news! The Ebert Family Clinic in Frisco, CO provides pulse oximeters for free. So, make sure to visit and grab your pulse oximeter before your next ascent.

Quick Summary of Recommendations

Individuals who require evaluation prior to high-altitude travel:

  1. Individuals who have symptoms after 2 weeks of a positive COVID-19 test without hospitalization
  2. Individuals who have symptoms after 2 weeks after hospital discharge
  3. Any patient who required care in the intensive care unit (ICU)
  4. Any patient who developed myocarditis or thromboembolic events

General recommendations for anyone before high-altitude travel:

  1. Monitor pulse oximetry after arrival of high altitude, and access care or descend if symptoms worsen.
  2. Rest and avoid high-altitude travel for at least 2 weeks after a positive test, and consider a gradually return to physical activity at higher altitudes.
  3. All individuals planning high-altitude travel should be counseled on how to recognize, prevent, and treat the primary forms of acute altitude illness (AMS, HACE, and HAPE)
  4. Limit the extent of planned exertion after ascent and, instead, engage in graded increases in activity that allow the individual to assess performance and avoid overextending themselves.

Reasons to forgo high-altitude travel:

  1. Severely elevated pulmonary artery pressures may be a reason to forego high-altitude travel altogether.
  2. High-altitude travel should likely be avoided while active inflammation is present in myocarditis.
  3. Patients who experienced arterial thromboembolic events due to COVID-19, (e.g. myocardial infarction or stroke) should defer return to high altitude for several months after that event or any associated revascularization procedures.

References:

  1. Andrew M. Luks and Colin K. Grissom. Return to High Altitude After Recovery from Coronavirus Disease 2019. High Altitude Medicine & Biology. http://doi.org/10.1089/ham.2021.0049
  2. Christensen CC, Ryg M, Refvem OK, Skjønsberg OH. Development of severe hypoxaemia in chronic obstructive pulmonary disease patients at 2,438 m (8,000 ft) altitude. Eur Respir J. 2000 Apr;15(4):635-9. doi: 10.1183/09031936.00.15463500. PMID: 10780752.
  3. Blokland IJ, Ilbrink S, Houdijk H, Dijkstra JW, van Bennekom CAM, Fickert R, de Lijster R, Groot FP. Inspanningscapaciteit na beademing vanwege covid-19 [Exercise capacity after mechanical ventilation because of COVID-19: Cardiopulmonary exercise tests in clinical rehabilitation]. Ned Tijdschr Geneeskd. 2020 Oct 29;164:D5253. Dutch. PMID: 33331718.
Image of Jesse Santana, dark brown hair, brown skin, beard and moustache with a stethoscope draped over his white coat, striped, collared shirt and maroon tie.

Jesse Santana is a second-year PA student at Red Rocks Community College in Denver, Colorado. He grew up in Colorado Springs, CO and attended the University of Colorado-Colorado Springs where he earned a bachelor’s in Biology and Psychology. Jesse worked as a Certified Nursing Assistant for two years before pursuing a Master’s in Biomedical Sciences at Regis University in Denver. Shortly after, he coordinated clinical trials in endocrinology and weight loss as a Clinical Research Coordinator at University of Colorado Anschutz Medical Campus. He enjoys hiking Colorado’s 14ers, spending time with family and friends, and camping.

A Summation of Wilderness Medical Society Clinical Practice Guidelines for Diabetes Management

According to recent research, nearly thirty million individuals in the United states have been diagnosed with diabetes. Due to this higher rate of prevalence, more people are aware of the basic information surrounding a diabetic diagnosis.  However, there are common misconceptions surrounding the average diabetic patient, with most information focused on the more common form of diabetes, type 2. Although the majority of diabetic patients in the United states do have type 2 diabetes, an estimated 5 to 10% of people with diabetes actually have type 1. Type 1 diabetes is an autoimmune disease in which the body’s own immune system destroys the cells in the pancreas that make insulin. Insulin is a very important hormone that enables sugar to enter the bloodstream in order for it to be used by the cells for energy, as well as stored for later use. Unlike type 2 diabetes, there is no cure for type 1 diabetes and the treatment options are limited; the only management for this form of diabetes is insulin therapy. The most common therapeutic regimens for type 1 diabetes includes constant monitoring of blood sugars using a glucometer or continuous glucose device. These devices combined with either syringes, preloaded insulin pens, and/or an insulin pump are the means to survival for type 1 diabetics. However, there have been many advancements in the ways physicians are able to help their type 1 diabetics control and manage their disease.  Because of this, type 1 diabetics are able to live their lives with far less complications.  When desired, type 1 diabetics are able to compete at high levels of activity and complete amazing feats, such as wilderness activities.

It is inspiring to know how type 1 diabetics are still able to perform in high intensity activities such as ultramarathons, ironmen/ironwomen, as well as professional sports, to name a few.  However, with such strenuous activity, it is important to note that diabetes control is more challenging.  Of note, it cannot be stressed enough, that baseline diabetic control is already challenging in itself.  By adding the addition of a strenuous environment and activity, diabetes control becomes more difficult as it is multifactorial.

To help address this issue, the Wilderness Medical Society (WMS) worked to form clinical practice guidelines for wilderness athletes with diabetes. The WMS gathered a group of experts in wilderness medicine endocrinology, primary care, and emergency medicine to compose these guidelines.  These guidelines are outlined for both type 1 and 2 diabetics who participate in mild-vigorous intensity events in wilderness environment with reduced medical access and altitudes greater than or equal to 8250ft; the objective to help individuals with diabetes better plan and execute their wilderness goals. The foundation summarizes their recommendations into pre-trip preparation, including a list of essential items to bring when on your wilderness trip, potential effects of high altitude on blood glucose control and diabetes management, and an organized algorithm to treat hyperglycemia and ketosis in the backcountry.

Effects of High Altitude on Diabetes Management:

At baseline, the various types of exercise activities are broken into aerobic, anaerobic, and high intensity exercise. Each type of exercise utilizes the energy stored in our bodies, in the form of sugar. In a healthy person without any comorbidities, during aerobic activities, glucose uptake into the large muscle groups is increased due to the increase in energy expenditure. To keep glucose higher during this form of exercise, insulin secretion is reduced. Simultaneously, other hormones such as adrenaline, cortisol, and glucagon are released into the system to promote further glucose release from processes such as gluconeogenesis and glycogenolysis.

Again, the body is utilizing its resource of glucose to move to the larger muscle groups to keep them moving and active. During anerobic and high intensity exercise, the same process occurs, but since these forms of exercise tend to be in short bursts, insulin levels tend to rise particularly in the post workout period.  This helps to diminish the effects of the counterregulatory hormones and keep blood sugar levels stable. If the athlete is unable to properly regulate insulin secretions during these various forms of exercise, then it is likely that he/she will experience frequent episodes of hyperglycemia. Also, due to the increase in insulin sensitivity in muscles post workouts lasting >60 min, hypoglycemia can also ensue.

In general, the WMS and other research demonstrates brief episodes of high intensity exercise are linked to hyperglycemia for diabetics. On the other hand, longer duration aerobic exercise will cause hypoglycemia. Unfortunately, due to the complex intricacies of glycemic control during exercise, in addition to the individuality of each patient and the multiple variables involved in each wilderness expedition (temperature, altitude, duration, etc.), the definitive guidance for adjustment of daily insulin continues to need refinement. This is why the WMS recommends extensive pre-trip planning with the various tools, research, and supplies that will be needed when planning any form of wilderness adventure.

Pre-trip Prep:

Like all endeavors, preparation is key in order to be better equipped to deal with the majority of future scenarios.  Planning is especially important when going on a wilderness expedition. Preparation becomes even more important with the diagnosis of diabetes. The WMS outlines the specific recommendations that should be included as a diabetic wilderness athlete. For example, pre-trip prep should generally include: (1) a medical screening, (2) research of the endeavor and how it may affect glucose management, and lastly (3) essential diabetes-specific medical supplies and backups.

Additionally, according to the American diabetes association, persons with diabetes should discuss with their primary care provider and or endocrinologist before a strenuous wilderness activity. This follow up ensures that athletes are up to date on their screenings, health maintenance labs, and prescriptions needed for therapy. Due to the various ways that diabetes can affect the body, the WMS also recommends that if a patient has cardiovascular involvement, retinopathy, neuropathy, or nephropathy, there should be a more extensive risk assessment by the provider. Although these complications are less commonly seen in high intensity wilderness athletes, adequate histories should be taken to avoid adverse circumstances.

As discussed earlier, altitude accompanied with increased strenuous exercise demands also has various effects on blood glucose management. As it pertains to altitude and blood sugar management in type 1 diabetes, multiple studies have shown an increase in insulin requirements at altitudes above 4000m (13,123′). At this time, researchers are unsure if this finding is due to the effects of acute mountain sickness or hypobaric hypoxia. Therefore, wilderness athletes with diabetes should be aware of the insulin resistance increase at these extreme altitudes.  In conjunction with altitude changes, as previously noted, the type of exercise will also play a role in insulin control.  Aerobic exercise for longer than 60 minutes can cause a hypoglycemic episode in type 1 diabetics due to the increased muscle sensitization to insulin. Therefore, at altitudes 4000m or above, wilderness athletes will be in a mixed long duration anaerobic/aerobic exercise. With the combination of these factors, there is a counter regulation effect, and the athlete becomes both more sensitive to insulin due to increase duration of exercise and less sensitive due to altitude demands. In order to better predict the effects of altitude combined with exercise, the WMS recommends close monitoring on shorter trips to recognize their specific glycemic trends prior to an extreme high-altitude expedition, as well as increased close monitoring of glucose management during their high-altitude endeavors.

Table 1: Environmental Effects on Diabetes, Imported from WMS

Lastly, in preparation of a high-altitude excursion, there are recommended items that should be packed for daily management of glucose, in addition to back up items to ensure athletes with diabetes aren’t left in a dangerous situation. Fortunately, the WMS was able to create a well-organized table on the recommended supplies.

Table 2: Medical Kit Preparation, Imported from WMS

Treatment of ketoacidosis or HHS:

To be properly prepared, an athlete should complete his/her own research on how changes of altitude and exercise can affect blood glucose management.  This includes complete pre-trip preparation and packing.  Once cleared, a diabetic athlete can finally head out on the high-altitude adventure. In case of emergency, a diabetic should be aware of the proper steps if he/she were to experience diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), or even acute mountain sickness (AMS). Hyperglycemia is described as a blood glucose greater than 250 mg/dL and without adequate treatment can lead to either DKA or HHS. Type 1 diabetics are more likely to go into DKA, while type 2 diabetics are more inclined to present in HHS. One of the most important indicators if a person were to be in DKA are ketones in blood or urine. This is why it is very important to make sure a wilderness athlete carries ketone strips in his/her emergency medical pack. Typically, if a patient finds ketones in their urine after using a ketone strip, then he/she is educated to seek emergent medical attention. When on a wilderness adventure, this can be a difficult task to accomplish. This is why the WMS also developed a flowchart in order to manage hyperglycemia and DKA without medical support. Refer to table 3 for their flowchart.

Table 3: Algorithm for management of hyperglycemia and ketosis in the backcountry. EDD, estimated daily dose, PO, oral intake, Imported from WMS

One issue that diabetics have when dealing with high-altitude is differentiating hypoglycemia and hyperglycemia side effects from AMS. The most reliable differentiating factor is increased blood sugar readings correlating with symptoms. WMS states that either a continuous glucose monitor or increased finger sticks for a higher frequency of blood sugar readings is important to determine if a person with diabetes is experiencing blood sugar complications of AMS. When discussing treatment of AMS in diabetics, the same methods are used as are recommended for a non-diabetic individual: Acetazolamide and dexamethasone in initial medical management. In regard to diabetes, it is important to discuss the potential additional side effects. Acetazolamide can worsen dehydration and acidosis if used at the wrong time. Dexamethasone is known to worsen blood glucose control. Both are still useful in acute mountain sickness but must be weighed against causing worsened complications.

Conclusion:

When participating in a wilderness adventure, individuals with diabetes will be prone to more medical side effects. Changes in altitude, along with the level of activity are known to affect diabetic control, so proper preparation prior to departure is required in order to ensure the health and safety of a diabetic wilderness athlete.  After being cleared by a medical professional and obtaining proper information, diabetics can plan to complete a wilderness adventure similar to that of a healthy individual with no comorbidities.  However, it is common for diabetics to experience hyperglycemia with high intensity activities and an increase in altitude. Therefore, diabetics (particularly type 1 diabetics), should be prepared with extra insulin to counteract elevated glucose levels. Alternatively, if a diabetic were to be at higher altitude with a longer duration of aerobic or anaerobic exercise, then he/she may be prone to hypoglycemia — lower blood sugar levels.  In either case, individuals with diabetes will need to monitor blood sugar levels more closely.  The WMS provides diabetics with an outline of recommended supplies that may be needed in the wilderness.  The outline also suggests for diabetics to bring ketone strips, as this is the most accurate measurement to determine if a diabetic is in DKA or HHS.  The ultimate goal of the WMS is to ensure the health and safety of diabetic athletes. Diabetes is a difficult disease to manage but becomes even more challenging when partaking in a wilderness adventure.

(All tables and figures imported from WMS)

References:

de Mol P, de Vries ST, de Koning EJ, Gans RO, Tack CJ, Bilo HJ. Increased insulin requirements during exercise at very high altitude in type 1 diabetes. Diabetes Care. 2011;34(3):591-595. doi:10.2337/dc10-2015

VanBaak KD, Nally LM, Finigan RT, et al. Wilderness Medical Society Clinical Practice Guidelines for Diabetes Management. Wilderness Environ Med. 2019;30(4S):S121-S140. doi:10.1016/j.wem.2019.10.003

Jonathan Edmunds is a second-year physician assistant student at RRCC PA Program in Arvada Colorado. Jonathan is a Colorado native, born and raised in Littleton, CO. He attended Colorado State University in Fort Collins, CO where he competed in Track and Field as a long jump/triple jumper, as well as earned his bachelor’s Biological Sciences. During his junior year in college, he was diagnosed with Type 1 diabetes and quickly became an advocate the support of diabetes education. After graduating in 2015, he focused his medical career aspirations on becoming a PA. He volunteered at Banner Fort Collins Medical Center and work at Bonfils Blood Center as a phlebotomist for 2 years before applying to PA school. In his free time, he enjoys coaching track and field at Littleton high school his alma mater, doing all things outdoors, and cozying up to his three “Irish” chihuahuas at home. 

High Country Winter Dogs

Dr. Margot Daly DVM, CCRP, CVA, of the Frisco Animal Hospital in Frisco, CO, graduated from the University of California – Davis in 2013, and has worked in general practice, emergency practice, and most recently in specialty practice as a full-time rehabilitation and sports medicine veterinarian. Prior to veterinary school, she studied Sociology at UC Berkeley, and had a career as a professional equestrian, which led to an interest in orthopedics, biomechanics, and physical rehabilitation. Following graduation, she received the Certified Canine Rehabilitation Practitioner designation from the University of Tennessee – Knoxville, and the Certified Veterinary Acupuncturist designation from the Chi Institute in Reddick, Florida. She has been with the Frisco Animal Hospital for a year and a half, and when she is not working, she can be found riding a horse or one of her many bicycles, fostering dogs and kittens, reading books, skiing, or traveling somewhere new!

We interviewed Dr. Daly on her advice for canine high country health, winter dog gear, common winter injuries, and winter activities to participate in with your dog.

One of the most common things to be aware of is canine “weekend warrior syndrome.” Dog owners must be sure their dogs are fit enough to participate in physically intense weekend activities. Many dogs only go out in their yard or take a few short walks during the week and then go on big hikes, back country ski trips, or long mountain bike rides on the weekends. Unfortunately, during the high intensity activity the dog’s adrenaline is high and the dog won’t show signs of fatigue, yet the next day with dog will feel awful and be extremely sore. It is comparable to a human doing cross fit only once per week … [imagine] how he or she would feel the next day. To avoid this phenomenon, ensure your dog is fit enough by practicing 30-60 minutes of moderate exercise at least three times per week, which can include 30 minutes of jogging or 60 minutes of active walking. If your dog is doing less than that during the week, it is important to be thoughtful of what you are asking of your dog or what you are giving them the opportunity to do over the weekend. Unfortunately, a fun weekend can become overly taxing on your dog very quickly.

Signs your dog may have done too much over the weekend include not wanting to go up or down stairs, refusing to jump in and out of the car, or not wanting to get up or down from the couch. Your dog may not necessarily be limping since they are more likely to have general full-body fatigue, aches, and soreness. Your dog should still eat and drink normally, and if they aren’t that is reason to call your vet.  

Winter Clothing & Gear

Booties: Dog clothing can be helpful as dogs can get cold just like humans do during outdoor winter activities. Booties can be advantageous during both summer and winter activities. The best policy is to pay attention to your dog’s behavior to determine how necessary booties are. Some dogs make it clear that they are uncomfortable in the snow and slush by holding their paws high in an alternating fashion, sitting down, or refusing to walk. Some dogs are more sensitive than others and some have a higher tolerance for the cold than others.

Dog booties!

The key to booties is acclimating your dog over a week or so before taking the booties out on an adventure. The best way to do this is to put your new booties on your dog in your house and then give them a treat or play with their favorite toy. This will help reinforce the booties and make them a fun experience for your dog! This may take several days before the dog will tolerate the booties and walk around comfortably in them. Essentially, don’t wait until the morning of the big hike to put the booties on your dog for the first time. Another strategy is to start with lightweight booties made of felt with one Velcro strap. These are a lightweight cheap option and are the same booties sled dogs on the Iditarod use. It is best to buy a few sets of these to start as some will inevitably get lost. If you find that your dog requires something more substantial, Dr. Daly recommends RuffWear boots which have a heavy rubber sole. Beware these booties may cause difficulty for a dog with mobility issues where heavy booties may impair the dog’s ability to walk safely. Custom booties are also an option and are recommended for dogs with atypically shaped feet such as greyhounds. A company called TheraPaw will coordinate with your vet to get measurements of your dog’s feet and make custom booties.

If your dog is totally intolerant of booties but could benefit from them, you can try musher wax. It provides a slightly waterproof barrier between your dog’s paws and the roads. It also helps prevent ice balls in dogs with a lot of feathering on their paws or between their toes. Put the wax on right before your take your dog outside and wipe the dog’s paws as soon as you get home. This can help protect dogs who have a lot of road time to protect them from road salt, sand, and ice chemicals.

Jackets: Dr. Daly confirms that there are dogs that may benefit from a jacket especially when participating in winter hiking or backcountry skiing. If you see your dog shivering, hunching their back, or crouching their neck and shoulders, your dog is likely cold and would benefit from a jacket. When choosing a jacket, it is imperative that you choose a jacket that has a full chest and short sleeves vs one that just has a strap across the chest. This ensures that the snow will slide off the chest and not become trapped against the dog’s skin. It is hard for a dog to overheat in the winter, but it is a good idea to provide layering for your dog. Most importantly, do not choose a cotton fabric, but a fabric that will wick and dry quickly such as fleece, soft shell, or a technical fabric. If your dog’s jacket becomes wet or soaked, it is important to take it off, because a wet jacket is no longer providing warmth and will end up making your dog colder.

Goggles: There are a large number of canine patients with eye problems related to the UV light exposure at high altitude. In particular, pannus, an eye condition exacerbated by UV light, is common in dogs living at high altitude due to more UV exposure and increased UV reflection off snow. This immune-mediated condition affects the cornea and causes pink or grey granular tissue to grow from the lateral cornea toward the medial cornea. It is a type of chronic superficial keratitis that certain breeds, specifically German shepherds, are more prone to. For this reason, goggles are recommended for dogs living at high altitude especially if the dog is a high risk breed or if they are already diagnosed with pannus. Weekend warriors are at a much lower risk of developing pannus and goggles are not as strongly recommended. As with dog booties, dogs must be acclimated to goggles and the goggles reinforced with treats or play time. It is not recommended to try out goggles for the first time out on the mountain. Aim for about a week of acclimation around the house and neighborhood so your dog tolerates the equipment well. Dr. Daly has had good luck with RexSpecs which do not require a vet to measure the dog, but she is always happy to help owners measure their dogs.

Sunscreen: Surprisingly, canine sunburn is rare, even at high altitude. If it does occur, the burn is normally anywhere the dog has thin to no hair or pink to white skin. Most commonly it occurs on the nose and belly, especially if the dog prefers to lounge on its back in the sun. Mineral-based sunscreens with an active ingredient of titanium dioxide, such as California Baby Brand Sunscreen, are recommended. After putting sunscreen or any ointment on a dog’s nose it is a good idea to immediately give him or her a treat or chew toy to avoid the dog licking the ointment right off.

Prevention at High Altitude

The one best thing you can do to make sure your pet stays healthy and happy at altitude is to ensure adequate hydration. Dr. Daly does not recommend supplemental electrolytes but encourages owners not to depend on mountain streams, rivers, lakes, snow, or puddles to provide adequate hydration for active high country dogs. The high country has giardia and leptospirosis in natural water sources. Giardia can cause gastrointestinal symptoms, and leptospirosis can cause liver and kidney failure as well as having the potential to be transmitted to humans. Bring as much water for your dog as you do for yourself. If you bring one liter then also bring one liter for your dog. Signs your dog may be dehydrated include lethargy, decreased appetite, odd behavior, head-shaking, crying out, or barking. Dogs normally tend to drink more water while at altitude, and this behavior is only concerning if the dog has blood in the urine, appears to be in pain while urinating, or is having accidents in the house when the dog was previously housetrained.

Lastly, if you go camping with your dog it is imperative that you bring your dog’s daily medications with you and not skip a day simply because you are camping. Chronic medications can’t be skipped for even one dose.

Common High Altitude Diagnoses

Dr. Daly sees many recreational injuries and ACL tears between February and April. During this time of year, the snow has a crusty top layer with soft snow underneath. This leads to dogs punching through the top layer and injuring themselves when the soft snow underneath gives way. This post-holing causes many ligament strains and tears this time of year. In the beginning of winter when the conditions are predominantly slippery and icy, she sees wrist and toe strains and sprains from dogs trying to grip with their feet.

Another common injury are lacerations from back country skis. Many people enjoy taking their canine companion back country skiing but fail to train the dog to stay behind them while cruising down the slope. As a result, many dogs end up with lacerations from running in front of or beside their owner and making contact with their owner’s skis. This can lead to lacerations on the dog’s lower legs including around their tendons. It is also important to teach your dog to stay behind you if they come mountain biking. Many dogs end up with injuries from running in front of or beside their owner’s mountain bikes.

Head pressing

Acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), re-entry HAPE, or high altitude cerebral edema (HACE) are exceedingly rare in dogs. The only situation which may predispose a dog to breathing problems is one coming from sea level with underlying cardiac or pulmonic pathology, such as heart failure or a pulmonary contusion. When coming from sea level with an older dog or one with an underlying comorbidity, it is recommended to stop in Denver for 2-3 nights to let the dog acclimate to the altitude and resultant lower oxygen concentration. Dogs can be prescribed home oxygen concentrators, but these should only be used under the supervision of a veterinarian as they require a specific home kennel or tubing being sewn into the dog’s nare. If your dog falls into a high risk category, Dr. Daly describes “head pressing” as an alarm sign requiring an emergency call to a local vet. This is described as a dog leaning headfirst into a wall, furniture, or other upright object as though it is using the object to hold its head up.  Other concerning signs include severe lethargy, vomiting or diarrhea that does not resolve within 24 hours, or respiratory distress of any kind.

Strengthening & Exercise

Most dogs will benefit from some degree of core and hind limb strengthening, as well as exercises to improve proprioception, or body awareness. The stronger and more coordinated the dog is, the lower risk of injury, even with high impact activities. Additionally, dogs can benefit from a personalized exercise program based on their confirmation, for example a long back or short legs, and pre-existing injuries. Dr. Daly’s background in sports medicine gives her a unique viewpoint allowing her to assess any dog and provide a program to prevent future and, more importantly, repeat injuries. If an owner is hoping that his or her companion can return to hiking 14ers after a ligament tear, then a home exercise program is imperative. Plans generally require about 20 minutes of treatment averaging three times a week and incorporating everyday activities such as stairs and working the dog on alternative surfaces. This ensures dog owners don’t necessarily have to invest in additional equipment.

Are there any winter dog sports clubs you recommend?

Dr. Daly has found that many types of active dogs enjoy the variety of mushing sports that can be done in the winter. These include everything from single or double dog skijoring, bikejoring, and canicross (which is a version of cross country running with your dog), all the way to dogsledding with two or more dogs. She is a part of the Colorado Mountain Mushers which is a great place to start for anyone interested in exploring these activities. The club consists of retired professional veterans to amateur mushers and is a friendly, welcoming, all-inclusive group with abundant resources and advice. The club usually runs about four events per year (COVID pending) and can help you learn some new ways to connect with your canine companion, Huskies not required!

Courtney Zak is currently in her second year of PA school at Red Rocks Community College in Arvada, CO. She is a member of the class of 2021 graduating in November. She attended the University of North Carolina at Chapel Hill in Chapel Hill, NC for her undergraduate degree in American Studies. She then completed an Occupational Therapy Assistant (OTA) program at Cape Fear Community College in Wilmington, NC. She practiced five years as an OTA working primarily with the geriatric population helping rehab people with various orthopedic injuries, strokes, heart attacks, and general deconditioning. After working up to management, Courtney decided she wanted to gain more medical insight and expand her scope of practice, so she decided to pursue a career as a physician assistant. Courtney now lives in Golden with her husband Jack, three dogs Brooks, Arlo, and Chloe, and her horse, Cannon. She enjoys horseback riding, hiking, paddle boarding, camping, and mountain biking in her free time.

The Plants We Need Are There: A Naturopathic Approach to Acute Mountain Sickness

Acetazolamide is already known for its success with treating Acute Mountain Sickness (AMS) and helping patients with their transition to higher altitudes, but what other options are available? What about those who don’t want a prescription, that are looking for other alternatives to help them with AMS and being at high altitude?

During my time in Frisco, Colorado (9000’/2743 m) I was fortunate enough to interview two resident Naturopathic Doctors. Mountain River Naturopathic Clinic on Main Street of this little mountain town is a wonderful oasis for anyone in Colorado’s Summit County looking for alternative care and treatment for their mind and body.

Dr. Kimberly Nearpass, ND and Dr. Justin Pollack, ND took the time to educate Dr. Chris Ebert-Santos, my classmate Rachel Mader, and myself about all the naturopathic remedies available for AMS and residents at altitude.

Tell us about Naturopathic medicine and why you picked this path of medicine?

Dr. Kimberly Nearpass: I thought I was going to be an OBGYN and then I did more research. I talked to doctors, midwives and herbalists and found that the Western medicine model didn’t feel right to me. So I thought, “Do I go to medical school and try to operate functionally from the inside or do I find another track?” I did not know about naturopathic medicine until a few years later. I took some time off; I traveled and went to the Peace Corps and then I discovered naturopathic medicine and loved it. I had lived in Ecuador in the rainforest as a naturalist guide so I learned a lot about traditional medicine that way. I learned a lot about traditional medicine when I lived in rural Africa as well. Living in these rural areas and watching the indigenous people — and they certainly use modern medicine — but they did not have a lot of access. Especially in the rainforest, they were using a lot of plants and I was fascinated by that. But I still wanted the medical training. Then I discovered naturopathic school. So, it’s four years of medical school, we get the medical training, but we also have that more holistic, natural, herbal based approach.

What naturopathic remedies are available for acute mountain sickness (AMS)?

Dr. Nearpass: So I will tell you Acli-Mate is our go-to. I’m not tied to this product, a friend of mine, it is her company, she is a naturopathic doctor in Gunnison. She formulated this, she started it out as a high-altitude electrolyte drink. Everybody that comes in our door, we start with this. This stuff works AMAZING. We rarely have to go anywhere else. I think the combination of the electrolytes and that it is hydrating has a great benefit. It helps with the headache and the nausea. For mild to moderate symptoms of AMS it is incredible. What we do is if we have family coming to visit from sea level is we have them start drinking it before they come.

Acli-Mate is found to be highly effective at helping people who are suffering from AMS. The blend includes herbs Ginkgo biloba and Rhodiola, both of which have proven effective in preventing and treating altitude related sickness. Both herbs seem to improve circulation, especially through cerebral vessels, and cellular energy function through improved uptake and utilization of oxygen, reducing toxic brain edema. Ginkgo has also been shown to inhibit platelet clumping, keeping red blood cells evenly dispersed, which improves delivery of oxygen to tissues, while Rhodiola appears to help the body deal with stress.

Nutrients in Acli-Mate: Vitamin C, and many of the B vitamins: thiamin (B1), riboflavin (B2), niacin (B3), pantothene (B5) and cobolamin (B12).

Acli-Mate in a variety of applications.

Have you noticed that when you have patients drink it before they arrive at high altitude, they have a better outcome?

Dr. Nearpass: Yes. And I have a patient who is 70 now and 5-10 years ago she went with some girlfriend to hike Mount Kilimanjaro. She had all her girlfriends take it and emailed me after saying, “We all did great!” And I don’t want to put all my eggs in one basket but this is almost always all we need.

Dr. Justin Pollack: There is something about that blend of Rhodiola, Ginkgo and the B vitamins that seems to work. We’ve had tons of people use it clinically.

Dr. Nearpass: For other options, I think Rhodiola is a good one. It’s interesting to me because Rhodiola grows in Mongolia, it grows in high altitude. One of the things we talk about in herbal medicine is often the plants we need are there. For example, dandelion root grows everywhere and it is good for liver detox and helps with hepatic function. So, it is interesting to me that dandelion is popping up on the side of the highways and in areas that we could probably use a little cleansing and detoxing.

Dr. Chris Ebert-Santos: What about Coca?

Dr. Nearpass: Oh yes! Coca works amazing. It is a plant that grows in the high altitudes of South America and when I was living in Ecuador the folks that live in the Andes drink coca tea all the time. They also take coca leaves and shove a wad in their mouth like chew. While they are doing work, cardiovascular work, they just put it in their mouth and that is their medicine. It gives them more stamina and reduces fatigue. There is not much research on it because you cannot even get it in the states.

Is there a reason you can’t get it here?

Dr. Nearpass: Because it’s the same plant as cocaine. We used to have a homeopathic version of it. Do you know what homeopathic medicine is? You take a remedy and you dilute it until you don’t have any molecules of the original substance but you basically are getting an energetic imprint. For example, Rhus tox, poison ivy, the homeopathic rhus tox is used to treat red itchy inflamed poison ivy type symptoms. But with coca, even homeopathically, the herb is used in concentrated doses to treat high altitude sickness and increase energy and stamina. But because there is such a control over coca, we can’t even get the homeopathic version, which is ridiculous because there is not a single molecule of the plant in the remedy.

Dr. Pollack: When Kim and I were on our honeymoon, we passed through Bolivia and Peru. In Bolivia in la Paz there was a coca museum. It was really fascinating because something around 1,000lbs of coca leaves must be distilled down into 1 gram to make cocaine. When you make tea out of the raw leaves it seems to have the subtle effect of suppressing appetite and allowing people to do better at altitude. Marijuana has a whole stigma around it, even though it has been legalized, and so the research and researchers are stigmatized, yet there are a lot of useful compound coming out of the plant. So, I’m sure that coca is the same, and hopefully somewhere down the line we will be able to use coca leaf for altitude.

Dr. Nearpass: And certainly, coca is the number one herb in the Andes that people use. You can get it everywhere, it’s like black tea down there.

So because coca is not available for your patients, and if you found Acli-Mate was not successful, what would you recommend?

Dr. Nearpass, a woman in a white hoodie, long brunette hair, and a maroon mask, stands in front of a wall of shelves of naturopathic medicine in brown glass jars with black lids at the Backcountry Apothecary in Frisco, CO.
Dr. Kimberly Nearpass

Dr. Nearpass: This is the thing about naturopathic doctors, we look at each individual. If it’s a resident, per se, we are going to draw blood work. We are going to try to figure out what’s going on, what is the underlying issue. Do you have relative anemia? We will run iron but also ferritin. They may have normal blood cells, normal H&H but their ferritin is a 2. One of the things that is tricky about being a naturopathic doctor is, we will be at a party and someone will ask, “Well what do you do for hypertension?” or “What do you do for digestive issues?” We always say we don’t treat symptoms; we don’t treat disease, we treat people. If someone is having recurrent altitude sickness, we are going to look at the individual and look at what is going on. What’s their diet? Are they hydrated enough? Are they drinking too much alcohol? Do they have subclinical hypothyroidism that might affect their metabolism and their ability to adapt when they get here? Might their ferritin levels be really low? And then we would sit down with the patient and say, “Well what are your symptoms? Is nausea the main symptom? Is headache the main symptom?”  And then, what other factors could be contributing to these symptoms? If it’s headache then CoQ10 would be what I would go to.

Dr. Chris Ebert-Santos: And what do you look for on physical exams on residents that are having trouble with altitude?

Dr. Nearpass: On physical exams we are doing the standard physical that you would do but we are also looking at the tongue. I am not a Chinese Medicine doctor but the tongue does give you some insight on what is going on in the digestive tract. If we are seeing inflammation or glossitis or geographic tongue, we are thinking, “Oh, this person may have some underlying digestive issue.” We might look at Arroyo’s sign, it’s a traditional sign when you shine a light on someone’s pupil and most of the time their pupil will constrict, but Arroyo’s sign is both pupils will stay dilated. This is a red light for adrenal issues, for hyper cortisol output or adrenaline output. If someone is in a chronically stressed state, their pupils are going to be dilated all the time. If it looks like someone has chronic stress, it takes you out of the parasympathetic, and so their digestion is going to be weaker. The way we look at it is the body has to prioritize, and there is only so much that one body can do. And I suspect that living at high altitude puts chronic stress on the body. I see this huge lack of libido in the women. I see women in their 20s, 30s, 40s, 50s. But it kind of makes sense right? If the body is chronically stressed, having a baby is a huge energy output for a woman. So, I think we may see the chronic stress impacts of living at high altitude.

Dr. Chris Ebert-Santos: So what do you do for the libido?

Dr. Nearpass: That is one that if I could invent one pill, it would be that one. Libido is really hard, especially in women. Unfortunately, what I see is its one of the first things to go in women and it’s one of the last things to respond. So, my suspicion is that this altitude is another physical stress on our bodies. I think we can see multiple systems being affected by it, maybe not severely but still.

Rachel Mader PA-S: Is there anything for sleep at altitude? I know a lot of people struggle with that.

Dr. Nearpass: Yes, again for us there is no magic bullet. Melatonin is very well known and that can be very helpful for some people, but it sure doesn’t work for everybody.  When patients come in and say, “What do you use for sleep?” I want to take every person back and have a conversation with them. Ask, “Are you having a hard time falling asleep? Are you having a hard time staying asleep? Are you waking up to go to the bathroom?” Right? So, there isn’t a magic bullet that will work for everyone. Breaking it down, I think you could have 50 people with altitude sickness and we’re going to do 50 different things. I mean, I would start with Acli-Mate, but every patient will be different.

Do you think there’s benefit to adding Acli-Mate in combination with an Acetazolamide prescription?

Dr. Nearpass: As far as I know, there’s no issue combining the two. Most people that come to us are usually trying to avoid medication, but what I always say to them in that situation is, “Try this other stuff to see if it helps.” But if it’s someone who had trouble in the past with AMS, I’ll say go to your medical doctor and get the prescription so that you have it if you need it. I think another issue is that people fly here right from Texas. They fly to Denver, they get right on the shuttle, and they drive right up here. If they’ve had trouble in the past, they should drive here and take their time. Spend a couple days in Denver if they have to. That does seem to help people.

Thank you so much Dr. Nearpass. Is there anything else about naturopathic medicine and high altitude you would like to share with us?

Dr. Nearpass: I guess I would say again that from a naturopathic perspective it is really about looking at the individual.

Is there anything that could specifically help with nausea symptoms of AMS?

Dr. Nearpass: Ipecacuanha! Ipecac syrup — which in full doses will make you throw up, so the homeopathic Ipecacuanha we use for nausea — that is one I have actually used quite a bit for people who have that aspect of AMS. It is really good for nausea and pregnancy too.

PA student Hannah Addison with Dr. Pollock, Dr. Nearpass and Dr. Chris in front of the Naturopathic clinic and apothecary in Frisco, CO.

The way I see Healthcare is a full spectrum, and on one end you have the brain surgeons and on the other end you have the Reiki energy healers. Then you have everything in between. I see us sitting in the middle. For patients, the best thing is to be aware of where they belong on that spectrum. I’m not going to replace a brain surgeon, but sometimes a little bit of massage and energy can do the trick. It is so great for us as practitioners to be able to talk and converse with the medical doctors. We’ve been really lucky in this community.

Visit Mountain River Naturopathic Clinic’s website or stop by their shop and clinic: http://www.mountainriverclinic.com

Available research articles on Naturopathic Remedies and AMS:

Zhang DX, Zhang YK, Nie HJ, Zhang RJ, Cui JH, Cheng Y, Wang YH, Xiao ZH, Liu JY, Wang H. [Protective effects of new compound codonopsis tablets against acute mountain sickness]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2010 May;26(2):148-52. Chinese. PMID: 20684264.

Tsai TY, Wang SH, Lee YK, Su YC. Ginkgo biloba extract for prevention of acute mountain sickness: a systematic review and meta-analysis of randomized controlled trials. BMJ Open. 2018;8(8):e022005. Published 2018 Aug 17. doi:10.1136/bmjopen-2018-022005

Gertsch JH, Basnyat B, Johnson EW, Onopa J, Holck PS. Randomised, double blind, placebo-controlled comparison of ginkgo biloba and acetazolamide for prevention of acute mountain sickness among Himalayan trekkers: the prevention of high-altitude illness trial (PHAIT). BMJ. 2004;328(7443):797. doi:10.1136/bmj.38043.501690.7C

Ke T, Wang J, Swenson ER, et al. Effect of acetazolamide and gingko biloba on the human pulmonary vascular response to an acute altitude ascent. High Alt Med Biol. 2013;14(2):162-167. doi:10.1089/ham.2012.1099

Wang J, Xiong X, Xing Y, et al. Chinese herbal medicine for acute mountain sickness: a systematic review of randomized controlled trials. Evid Based Complement Alternat Med. 2013;2013:732562. doi:10.1155/2013/732562

Lee SY, Li MH, Shi LS, Chu H, Ho CW, Chang TC. Rhodiola crenulata Extract Alleviates Hypoxic Pulmonary Edema in Rats. Evid Based Complement Alternat Med. 2013;2013:718739. doi:10.1155/2013/718739

Hannah Addison, PA-S

Hannah Addison (she, her, hers) is a second-year physician assistant student at Red Rocks Community College Physician Assistant Program in Arvada Colorado. Hannah was born and raised in the South Denver area of Colorado. She spent four years getting her bachelor’s in biomedical science at Colorado State University in Fort Collins, CO where she decided her life career goal was to become a PA. After graduating and while applying for PA programs, Hannah worked at Littleton Adventist Hospital of Centura as a CNA, Telemetry Technician and Unit Clerk. In her free time, Hannah enjoys hiking and discovering all the delicious food and drink Colorado has to offer.

WMS Blog Entry No. 5: Advances in Frostbite, a Synopsis of Dr. Peter Hackett’s Lecture

Frostbite is an injury caused by freezing of the skin and underlying tissue. The main pathophysiology of frostbite is ischemia. Basically, where there is blood flow there is heat and where there is no blood flow there is no heat to that area. The vasoconstriction and loss of blood flow to the skin predispose the skin to becoming frozen. Heat transfer depends on blood flow and blood flow depends on sympathetic nerve tone. In our extremities, there are only nerves that cause vasoconstriction. Exposure to cold or a drop in the body’s core temperature can induce vasoconstriction from these sympathetic nerves in which decreases the amount of blood flow to the extremities to keep the central aspect of the body warm and central organs well-perfused to help to maintain the body’s core temperature.

Frostbite usually occurs in the apical areas of the skin also called glabrous, which is Latin for smooth because these areas have no hair. These areas include the face, palmar surface of the hand, and the plantar surface of the foot. These areas of the skin are rich in arteriovenous anastomoses, which are low-resistance connections between the small arteries and small veins that supply the peripheral blood flow in the apical regions of the skin. These anastomoses allow the blood to flow into the venous plexus of the skin without passing through capillaries, and play a major role in temperature regulation.

Causative factors of frostbite include inadequate insulation, circulatory compromise, dehydration, moisture, trauma, and immobility. All of these factors in combination can result in frostbite.

The behavioral risk factors include mental illness, alcohol/drug use, fear, apathy, and anxiety. All of these risk factors can contribute to frostbite, generally, from poor self-care.

Frostbite is said to kill twice during its two phases that occur. The first phase is the frozen phase in which ice crystals form in the intracellular compartment at about 29 degrees Fahrenheit. These ice crystals will suck the fluid out of the endothelial cells and become enlarged causing the endothelial cells to lyse from dehydration and interrupt microcirculation. The second phase is the rewarming phase in which the skin thaws and is at risk for microthrombi production and necrosis due to prolonged injury to those endothelial cells.

The usual phase at which we see frostbite in a clinical setting is after thawing, in which the skin looks flushed pink, red, with the appearance of blebs that form one hour to twenty-four hours after thawing. These blebs can rupture spontaneously in 4-10 days and shortly after, a cast-like eschar forms. Then the eschar usually sheds in 21-30 days.

Deep Frostbite

Frostbite is classified based on the depth of tissue damage, from superficial with no tissue damage being mild and deep tissue damage including muscle, bone, or tendon being classified as severe frostbite. The mildest form of frostbite is called frostnip. Frostnip is freezing of the skin but there is no actual freezing injury and doesn’t cause permanent skin damage.

Stages of Frostbite

What can you do in the field for Frostbite?

It is important to provide supportive care with IV or PO hydration to prevent dehydration. If the affected area is frozen with no imminent rescue, it is recommended to thaw the area with warm water and try to avoid refreezing. You can give NSAIDs, such as Ibuprofen, 400 mg every 8 hours, or ketorolac 30 mg IV. If the person is at altitude and their oxygen saturation is low you can provide oxygen. However, the individual must be taken to the nearest hospital for further treatment, especially in cases of severe frostbite.

New research studies have been exploring the use of thrombolytics in the treatment of frostbite. Many of the research studies have shown that IV TPA or iloprost may be of benefit to administer in a hospital setting. However, iloprost is not approved for IV use in the United States and other prostacyclins have not been studied for the use of frostbite as of yet. There are current literature and guidelines that have been published for the prevention and treatment of frostbite, however, more research is needed to further support standardized treatment of all patients with frostbite with thrombolytic therapy. Hopefully, these new studies will encourage more research into using thrombolytics and prostacyclins for frostbite.

In the meantime, it would be best to stay warm to prevent frostbite. Tips to help in frostbite prevention include:

  • Limit time you’re outdoors in cold, wet, or windy weather. Pay attention to weather forecasts and wind chill readings. In very cold, windy weather, exposed skin can develop frostbite in a matter of minutes.
  • Dress in several layers of loose, warm clothing. Air trapped between the layers of clothing acts as insulation against the cold. Wear windproof and waterproof outer garments to protect against wind, snow, and rain. Choose undergarments that wick moisture away from your skin. Change out of wet clothing — particularly gloves, hats, and socks — as soon as possible.
  • Wear a hat or headband that fully covers your ears. Heavy woolen or windproof materials make the best headwear for cold protection.
  • Wear socks and sock liners that fit well, provide insulation, and avoid moisture. You might also try hand and foot warmers. Be sure the foot warmers don’t make your boots too tight, restricting blood flow.
  • Watch for signs of frostbite. Early signs of frostbite include red or pale skin, prickling, and numbness.
  • Eat well-balanced meals and stay hydrated. Doing this even before you go out in the cold will help you stay warm.

Lauren Pincomb Apodaca is a second-year Physician Assistant student in the Red Rocks Community College Physician Assistant Program. Originally from Las Cruces, New Mexico, she graduated from New Mexico State University with a Bachelor of Science in Biochemistry and a Bachelor of Art in Chemistry. After obtaining her undergraduate degrees, she was accepted as a Ph.D. fellow in Pharmacology at the University of Minnesota where she conducted research in a biomedical laboratory doing cancer research. She then realized that she wanted to make a difference in people’s lives through hands-on experience rather than working in a laboratory. She went back to New Mexico and received her certification as a nursing assistant and started from the ground up to reach her ultimate goal of being a Physician Assistant. She has enjoyed living in Colorado and the many outdoor activities that Colorado has to offer. Her favorite are kayaking, fishing, and hiking. She is looking forward to graduating soon.

References:

Hill, C. (2017, December 22). Cutaneous Circulation – Arteriovenous Anastomoses. Retrieved September 27, 2020, from https://teachmephysiology.com/cardiovascular-system/special-circulations/cutaneous-circulation/

Frostbite. (2019, March 20). Retrieved September 27, 2020, from https://www.mayoclinic.org/diseases-conditions/frostbite/symptoms-causes/syc-20372656

WMS Blog Entry No. 4, Part I: Tick Bite Prevention and Proper Removal

Ticks are blood feeding parasites. Ticks are known as vectors because they can transmit different pathogens responsible for several diseases including Colorado Tick Fever, Rocky Mountain Spotted Fever (RMSF), Tularemia and relapsing fever. While there are 27 species of ticks in Colorado, almost all human encounters w/ ticks in Colorado involve the Rocky Mountain wood tick, a tick that only lives in the western U.S. and southern Canada at elevations between 4,000 and 10,000 feet. Another highly prevalent tick is the brown dog tick which is specific to dogs.

Before you go out!

DO:

  • Wear protective clothing! Wearing long sleeved shirts, long pants tucked into your socks and close toed shoes can keep ticks from getting onto your skin, as ticks are usually acquired while brushing against low vegetation.
    • wear light colored clothing, as this makes it easier to find ticks that have been picked up
    • Treat clothing w/ permethrin as this can help kill or repel ticks for days to weeks! Do not apply directly to skin.
  • Use Tick repellent. This includes the well-known DEET along with picaridin, IR3535 and oil of lemon eucalyptus
    • Repellent can be applied either directly to skin or to clothing, AND is most effective if applied to the lower body that is likely to come in contact with ticks first!
    • If applying repellents to skin:
      • DO NOT use high concentration formulas on children (DEET concentration > 30)
      • AVOID applying repellents to your hands or other areas that may come in contact with your mouth
      • DO NOT put repellent on wounds
      • ALWAYS wash skin that has had repellent on it.
  • Remember: Dogs can get ticks too! Don’t forget to consult your veterinarian about how to protect your furry friends against ticks.

When you go out: DO NOT assume that you won’t get bit.

  • Avoid tick habitat
    • Ticks are most active in spring and early summer and are concentrated where animal hosts most commonly travel, including areas of brush along field and woodland edges or commonly traveled animal host paths though grassy areas.
      • DO try to avoid exposure in these areas by staying in the center of marked trails when hiking to avoid brushing vegetation that ticks may be perched on waiting for you!
    • If possible, avoid these sites during tick season.
    • If you live in known tick territory, you may even get a tick bite in your own backyard! Decrease this risk by creating a tick-free zone around your house by keeping your lawn mowed, eliminating rodent habitats (wood or rock piles) around your house, and placing wood chips between your lawn and tall grasses or woods.

After coming back inside

  • Perform a tick check which includes botha visual and physical inspection of your entire body, as well as your gear and pets. Because ticks take several hours to settle and begin feeding, you have time to detect and remove them. You tend to not feel ticks because their saliva has histamine suppression and analgesic effects. Ticks like warm, moist and dark areas but can latch anywhere.
    • Examine your scalp, ears, underarms, in and around the belly button, around the waist, groin/pubic area, buttocks and behind your knees.
    • If camping, perform tick checks daily on humans AND pets, making sure to examine children at least twice daily. Again, pay special attention to the head and neck and don’t forget to check clothing for crawling ticks.
    • Shower and wash your clothes after returning home from the outdoors.

If you or a family member get bit by a tick: DO NOT PANIC, and DO NOT immediately rush to the emergency room! If the tick has been attached for less than a day, the chance of the tick transmitting one of these diseases is low. Removing ticks can be tricky, as they use their mouthparts to firmly attach to the skin.

Best method for tick removal -> remove as quickly as possible!

1. Grasp the tick with fine tipped tweezers as close to the skin as possible. If tweezers are not available, use a rubber gloved hand or place tissue or thin plastic over the tick before removing it to avoid possible transmission of disease.

2. Pull tick SLOWLY and with STEADY PRESSURE STRAIGHT away from the skin

  • DO NOT:
    • Crush, puncture, twist or jerk the tick as you remove it. This may increase risk of the tick regurgitating infected body fluids into the skin or leaving mouthparts in skin

3. After the tick is removed, disinfectant the attachment site on skin and WASH YOUR HANDS. Dispose of the live tick by placing in a sealed bag/container and submersing it in alcohol, then wrapping it tightly and crushing it in duct tape, OR flushing it down the toilet.

  • DO NOT:
    • crush the tick in your fingers
    • try to suffocate the tick still on the person by covering it with petroleum jelly OR touching it with a hot match to suffocate -> these methods can cause the tick to burst and INCREASE time the tick is attached, as well as making the tick more difficult to grasp

Remember: the goal is to remove the tick quickly from the host as opposed to waiting for it to detach on its own.

If you remove the tick and are worried, you can always put the tick in a sealed container with alcohol and bring the dead tick to your medical provider.

If you develop a rash or flu-like symptoms (fever, fatigue, body aches, headache) within several weeks of removing tick, see your medical provider and tell him/her about the recent tick bite, when it occurred and where you acquired the tick.

Remember: These diseases are very treatable if caught early enough!

Graphic taken from https://www.cdc.gov/ticks/pdfs/FS_TickBite-508.pdf

Stay tuned for next month’s explanation of the tick life cycle and tick-borne diseases in the high country!

References

1. Colorado Tick and Tick Born Diseases fact sheet. https://extension.colostate.edu/topic-areas/insects/colorado-ticks-and-tick-borne-diseases-5-593/ Accessed on 8/8/20

2. Peterson J., Robinson Howe. P. Lyme Disease: An Uptick in Cases for 2017. Wilderness Medicine Magazine: https://www.wms.org/magazine/1213/Lyme-Disease. Accessed 8/8/20

3. Do’s and Don’t’s of Tick Time: https://awls.org/wilderness-medicine-case-studies/dos-and-donts-of-tick-time/ Accessed 8/8/20

Laurie Pinkerton is a 3rd year Physician Assistant Student studying at Drexel University in Philadelphia, PA. Originally from Northern, VA, she graduated from the University of Mary Washington in Fredericksburg, VA with a degree in Biology in 2014. She moved to Keystone to live that ski life and stayed for 2 years, working as a pharmacy tech at Prescription Alternatives and as a medical assistant at Summit Cardiology. Prior to starting PA school, she moved to Idaho where she learned about organic farming and alternative medicine.  She has loved every second of being back in Summit County and learning here at Ebert Family Practice. She looks forward to practicing Integrative Medicine in the near future.