Increasing the Altitude to Decrease the Symptoms of Parkinson’s Disease

By Jessica Thomas PA-S

 In May of 2009 Michael J Fox’s “Adventures of an Incurable Optimist” aired on ABC. This special chronicled his decision to battle the effects of his Parkinson’s disease with optimism and hope. During the production of this special he journeyed to the Kingdom of Bhutan. While in Bhutan, Michael J. Fox noted that his symptoms of Parkinson’s disease had almost completely vanished. 

 Bhutan lies between China and India, on top of the Himalayan Mountains. Bhutan is an extremely unique country since it is cut off from the rest of the world and has a desire to keep its culture unaffected by today’s modernization and globalization. Altitudes in Bhutan average 8-9,000 ft above sea level. When Fox’s parkinsonian symptoms decreased, he couldn’t help but wonder about the connection between the increased altitudes and the decrease of his symptoms. 

With more research into the topic it becomes apparent that Michael J. Fox was not the first person with Parkinson’s disease to notice a difference when in the high altitudes. According to Fred Ransdell, author of Shaky Man Walking, he has had two individual experiences where his tremors almost completely vanished. The first takes place whenever he is flying. Mr. Ransdell states that as the plane gains altitude he will remain completely asymptomatic until the plane lands. The second was when he was driving over a mountain pass at 9,000 feet elevation and he states that at that moment he noticed that his tremors were gone. How can this be? 

The first theory for why the increased altitude (>6,000 ft above sea level) decreases symptoms of Parkinson’s disease stems from the pH of our blood. When at higher altitudes we breathe faster and deeper in order to get enough oxygen into our lungs. When we breathe, our body discards carbon dioxide in proportion to oxygen we take in. Knowing this, it is understood that the increase in breathing also causes our body to get rid of more carbon dioxide from our blood which in turn will raise the blood pH making it more alkaline in nature. Naturally our blood is alkaline (approximately a pH of 7.3-7.4), otherwise death would ensue. Acids in our body are generally cell by-products, meaning that when our body is making energy or other necessities to life, they will give off acids. These acids are processed through the lymphatic system. When we have increased acids in our body the lymphatic system can get backed up. The back-up of acids in the body can cause stiffness, pain, and swelling. As the back-up worsens, deeper problems occur that affect the function of the cells and the tissues which can turn off hormone, steroid, and neurotransmitter production. Although this is an oversimplification of the process, it is easy to see that the more acidic the blood is, the more we may see increased symptoms of Parkinson’s disease. Correction of this acidosis is thought to preserve muscle mass in conditions like Parkinson’s and help with coordination. 

The second theory revolves around hypoxia and the main neurotransmitter that Parkinson’s disease effects. A study published in Springer titled Intermittent Hypoxia and Experimental Parkinson’s Disease found a link between hypoxia and the increase of dopamine synthesis. We know that atmospheric pressure reduces with altitude and with that so does the amount of oxygen. The reduction in the partial pressure of inspired oxygen at higher altitudes lowers the oxygen saturation of the blood which leads to hypoxia. But what does this have to do with parkinsonian symptoms? The results of this study revealed that a two-week course of intermittent hypoxia training in patients with Parkinson’s disease increased dopamine synthesis in old and experimental PD animals which restored the asymmetry of DA distribution in the brain. Parkinson’s disease is a progressive disorder that affects dopamine-producing neurons in the brain. When these neurons are destroyed, the production of dopamine severely decreases and we see symptoms such as tremors, slowness, stiffness, and balance problems

The Michael J. Fox Foundation for Parkinson’s Research received a research grant in 2018 to study the effects of altitude on Parkinson’s Disease. The study consists of two individual parts. The first part is a focused survey that asks individuals with Parkinson’s about their best and worst experiences with their symptoms during their travels in the last 2 years. The second part of the study will be an in-depth survey that with capture the travel experiences prospectively. 

Maybe we see the decrease in symptoms because of the hypoxia or maybe it is due to the increased pH of our blood, or maybe it is because of something we have yet to discover. With the new study from the Michael J. Fox Foundation on the horizon, answers to this question may be within our grasps. 

Jessica Thomas is a Physician Assistant student at Des Moines University in Iowa. Following graduation Jessica will be practicing family medicine in small town Iowa with an emphasis on preventative care and pediatrics. Over  the course of the last year she has had the joy of living and working in 6 different states around the country and has experienced many different climates and learned how to care for the ailments that occur in the different regions of the United States. When not at work or studying, you can find her reading on her porch swing, watching Hallmark movies in bed on Sunday afternoons, or spending time with her family and friends. 

References

F. R. (n.d.). Altitude and Parkinson’s disease. Retrieved from https://www.shakymanwalking.com/altitude-and-parkinson-s.html

Altitude in Bhutan. (n.d.). Retrieved April 12, 2019, from https://www.bhutantravelbureau.com/about-bhutan/township-altitudes/

Belikova, M. V., Kolesnikova, E. E., & Serebrovskaya, T. V. (1970, January 01). Intermittent Hypoxia and Experimental Parkinson’s Disease. Retrieved from https://link.springer.com/chapter/10.1007/978-1-4471-2906-6_12

Bloem, B. R., & Faber, M. J. (n.d.). Exploring the Effect of Altitude on Parkinson’s Disease. Retrieved April 12, 2019, from https://staging.michaeljfox.org/foundation/grant-detail.php?grant_id=1813

Ma, H., Wang, Y., Wu, J., Luo, P., & Han, B. (2015, September 01). Long-Term Exposure to High Altitude Affects Response Inhibition in the Conflict-monitoring Stage. Retrieved April 12, 2019, from https://www.nature.com/articles/srep13701

Parkinson’s and Nutrition. (n.d.). Retrieved from http://parkinsonplace.org/programs-services/parkinsons-and-nutrition/

Schwalfenberg, G. K. (2012). The alkaline diet: Is there evidence that an alkaline pH diet benefits health? Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195546/)

6 thoughts on “Increasing the Altitude to Decrease the Symptoms of Parkinson’s Disease”

  1. some researchers look at idiopathic parkinson’s disease as possibly a mitochondrial disorder. recent research with mice with severe mitochondrial genetic issues have shown dramatic improvement when they live in hypoxic chambers, suggesting that the problem is unused oxygen causing the issue (from defective or reduced mitochondrial capacity), not a lack of energy per se. dr peter attia’s interview with dr. vamsi mootha at approximately 1 hour 53 minutes at https://peterattiamd.com/vamsimootha/ discusses the preliminary findings.

    1. Fascinating! You’ve just taken this article a whole level up! Thanks, diana!How did you come across that study?

      1. i just listened to the podcast which grabbed my attention with the hypoxia issue. i was my mom’s full-time caregiver (she had PD) so i have been following many related issues for years now. this is such a refreshing new take on what might be happening.

        1. Practical experience with these issues is invaluable, and really makes the research relatable. We are working to get all of this research recognized by the general community. Thank you for contributing!

  2. I am looking at the effects of altitudes on the exchange of gasses in the blood.
    My wife has liver disease and ammonia is building up in her blood. I’m wondering if lower atmospheric pressure would allow the ammonia to be exhaled.
    I’m also looking into breathing mixed gasses that would attract the ammonia and allow it to be exhaled.
    I’m not not a doctor or chemist so my terminology is probably not correct but I am familiar with gas laws so I think there May be possibilities.
    Any insights on the subject would be greatly appreciated.

Leave a Reply

Your email address will not be published. Required fields are marked *