Tag Archives: Medicine

Thin Air Making You Lightheaded?

by Joy Plutowski, PA-S2

Feeling lightheaded after going to a high altitude is a key symptom of acute mountain sickness (AMS)—a condition caused by the reduced oxygen available in thin mountain air. AMS often comes with other symptoms like headache, nausea, and fatigue, usually starting after a recent climb to higher elevations.

But what if it’s not just AMS? For people with conditions like postural orthostatic tachycardia syndrome (POTS), which affects blood flow and heart rate, lightheadedness at altitude could be a clue to an underlying issue. While AMS happens because of low oxygen, POTS is tied to a problem with how the nervous system regulates the body. In some cases, going to altitude might even uncover undiagnosed POTS, as symptoms can become more noticeable in these conditions.

Living With POTS

Living with POTS has been a journey of adaptation, requiring constant vigilance and adjustment to manage a complex array of symptoms. Each new environment brings its own challenges, demanding a personalized approach to maintaining stability. My recent clinical rotation in Frisco, Colorado, situated at 9,000 feet above sea level, provided an invaluable opportunity to observe firsthand how altitude influences the physiology of POTS. An overnight stay in Denver for partial acclimatization helped mitigate some initial altitude-related exacerbations, but the first few days at higher elevation were marked by pronounced symptoms, including lightheadedness, tachycardia, and insomnia. Physically demanding activities, such as snowboarding, pushed my body to its limits, resulting in extreme fatigue and heightened tachycardia. Despite these challenges, I observed gradual improvement; by the second week, I had returned to my baseline—if not better than during my time in the heat of Phoenix, Arizona. Interestingly, the colder temperatures of the region seemed to offer symptomatic relief, likely through vasoconstriction that may enhance circulation. These experiences have deepened my understanding of POTS as a highly individualized condition, emphasizing the critical importance of lifestyle modifications, environmental considerations, and a patient-specific approach to management. My journey underscores how adaptability and tailored interventions can significantly improve functionality and quality of life for those navigating the complexities of this syndrome.

What is POTS?

Postural Orthostatic Tachycardia Syndrome (POTS) is a chronic condition characterized by an abnormal increase in heart rate upon standing. It is a form of dysautonomia, involving dysregulation of the autonomic nervous system, which balances the sympathetic (“fight or flight”) and parasympathetic (“rest and digest”) systems. The autonomic nervous system regulates involuntary bodily functions such as heart rate, blood pressure, and digestion. POTS primarily affects women, with symptoms often appearing in their teens or twenties. It is estimated to affect between 1 to 3 million people in the United States, though it is likely underdiagnosed due to lack of awareness. Under normal conditions, standing triggers the body to constrict blood vessels and slightly increase heart rate to counteract gravity’s effects. In POTS, this response is impaired, leading to blood pooling in the lower extremities and reduced blood flow to the brain. The exact cause of POTS is not fully understood, but it is commonly linked to viral infections, autoimmune conditions, genetic predispositions, small fiber neuropathy, impaired norepinephrine regulation, or hypovolemia (low blood volume). Notably, long-COVID, a range of long-term symptoms and conditions resulting from an acute COVID infection, is linked to POTS. Approximately 1% of patients with an acute COVID-19 infection go on to develop orthostatic intolerance (Cheshire, 2024). Studies also show that keeping up with COVID-19 vaccinations can prevent long-COVID.

The hallmark symptom of POTS is an excessive increase in heart rate of over 30 bpm quickly after standing (WP, 2024). Common symptoms include tachycardia, palpitations, dizziness, and fainting (syncope or near-syncope), brain fog, headaches, lightheadedness, and severe fatigue. Less common symptoms include nausea, bloating, abdominal discomfort, shakiness, and exercise intolerance. POTS symptoms are often worsened by factors such as dehydration, heat, prolonged standing, illness, or physical stress. Diagnosing POTS involves a tilt-table test which monitors heart rate and blood pressure during positional changes. Treatment for POTS focuses on improving symptoms and quality of life through lifestyle adjustments. Key components include hydration, increased salt intake, compression garments, graded exercise therapy, and psychological support. Medications such as Fludrocortisone or Midodrine, that both increase blood pressure, may be added if the provider deems it fit. The course of POTS varies widely; some individuals experience significant improvement with treatment, others may have persistent symptoms. Early diagnosis and a multidisciplinary approach can lead to better outcomes.

The Effect of Altitude on the Autonomic Nervous System

Altitude significantly influences the autonomic nervous system due to reduced oxygen levels and atmospheric pressure, which challenge the body’s ability to maintain homeostasis. At higher elevations, the sympathetic nervous system becomes more active, increasing heart rate and blood pressure to compensate for lower oxygen availability. This is because hypoxia alters chemoreceptor and baroreceptor function, leading to increased sympathetic excitation and decreased parasympathetic tone.

During a study at 4300 m, urine norepinephrine levels—a marker of sympathetic activity—peaked 4–6 days after altitude exposure (Mazzeo, 1998). The study compared women in different hormonal phases when exposed to high altitude. The urinary norepinephrine levels heart rates both increased over time in both follicular and luteal phases. The differences between the two were not statistically significant, showing that women experience sympathetic increase at altitude regardless of what phase of their cycle. This was done in comparison to a previous study showing the same findings in men (Mazzeo, 1998). 

A line graph indicating the rise follicular and luteal heart rates in beats per minute as days at altitude increase.
A line graph indicating increasing amounts per 24 hours of urinary norepinephrine.

Other physiological responses include increased ventilation, cardiac output, and heart rate. However, with acclimatization, heart rate and cardiac output typically return to sea-level values within 9–12 days (Hainsworth et al., 2007). Over time, improved oxygen-carrying capacity enhances tolerance to orthostatic stress. All in all, orthostatic tolerance during hypobaric hypoxia involves three mechanisms: cardiovascular control of heart rate and cardiac output, cerebrovascular responses to hypocapnic hypoxia (due to hyperventilation), and elevated sympathetic activity (Blaber et al., 2003). 

For individuals with POTS, altitude-related stresses may exacerbate symptoms. Hypoxia and reduced barometric pressure can worsen fatigue, brain fog, and dizziness by increasing the body’s effort to oxygenate tissues. Reduced oxygen delivery to the brain and tissues may intensify lightheadedness and syncope— which is already common in POTS.

Although acclimatization typically occurs within 1–2 weeks at altitude in healthy individuals, research on acclimatization in POTS patients is limited. Further studies are needed to determine whether individuals with autonomic dysfunction can adapt as effectively as those without.

Living With POTS at Altitude 

Living with POTS at altitude presents unique challenges that require careful management, as patients may find it harder to adapt to the altitude-induced changes in blood oxygenation and pressure regulation. These challenges are compounded by the existing difficulties they face in maintaining autonomic stability. The reduced oxygen levels and increased demands on the cardiovascular system can amplify POTS symptoms, making daily activities more difficult. Patients with POTS generally understand their triggers and have a protocol that was formulated with their provider. Such strategies include staying well-hydrated, using compression garments, increasing salt intake, decreasing alcohol and caffeine consumption, and avoiding sudden changes in posture. Also, gradual exposure to altitude helps the body adapt to the reduced oxygen and barometric pressure, minimizing symptom flares. For individuals with POTS visiting high-altitude environments, strict adherence to their treatment regimen, including lifestyle modifications and potentially pharmacologic interventions, is paramount for managing their condition effectively.

Blaber AP, Hartley T, Pretorius PJ (2003) Effect of acute exposure to 3,660 m altitude on orthostatic responses and tolerance. J Appl Physiol 95:591–601

Cheshire WP. (2024) Postural tachycardia syndrome. UpToDate. 

Hainsworth, R., Drinkhill, M. J., & Rivera-Chira, M. (2007). The autonomic nervous system at high altitude. Clinical autonomic research : official journal of the Clinical Autonomic Research Society, 17(1), 13–19

Mazzeo RS, Child A, Butterfield GE, et al. (1998) Catecholamine response during 12  days of high-altitude exposure (4,300 m) in women. J Appl Physiol 84:1151–1157

A Query on Mt Quandary

A personal story of acute mountain sickness (AMS)

Disturbing the “Locals”

“Race ya down”, my friend Liz took off from the summit of Mt. Quandary. Ahead of us stood a 2 mile scrabble through a boulder field with a 1 mile decent down a winding trail through the forest where we would descend from 14,265’ to 10,850’. In my experience, a 6 mile hike with 3,400 vertical feet was no feat. However, something was different as we approached the cars at the end of the hike. I noticed the start of a headache and I held onto the car to keep myself from swaying while taking off my boots. Thinking this was merely dehydration I finished my 3 liters of water – but that did not help. Once in the car my head continued to throb as we drove over Hoosier pass. Incoherently I mentioned that we should stop for Gatorade but the 64 oz of Gatorade did not abate my symptoms. In fact they worsened, my symptoms included severe dizziness, nausea, and a pounding headache. While my memory was hazy I knew this was not dehydration, maybe this was acute mountain sickness? But how could it be? I was in shape, lived at 5,400’, and this was my 5th 14er that summer. Was it possible to have AMS on the same peak I had climbed just weeks prior?

Standing on the summit of Mt. Quandary

My name is Chris Whitcomb and I am a 3rd year PA student at the University of Colorado. This story is all too familiar for anyone who spends time at elevation. Thankfully by the time we hit Idaho Springs, 7,526’, my symptoms dramatically improved. After reviewing my case and talking it over with my peers I believe that I developed AMS with some elements of HACE mixed in. A quick calculation of the Lake Louise Score came in at 6, which would classify this episode as “severe AMS”.

Who is most susceptible to AMS?

A prospective study analyzed a total of 11,182 workers on the Quighai-Tibet railroad in Tibet. This study identified 6 independent risk factors for AMS such as: rapid ascent to elevations above 3500 m (11482’), sea-level or lowland newcomers, young people of age, heavy physical exertion, obesity, or SaO2 below 801 Another study in 2013 looked into various other predictive indexes for AMS and found that the level of activity (higher activity) and sex (male>female) lead to increased odds of AMS 2. A quick review of the above criteria showed that I was the perfect demographic for AMS. I am a young male who was exerting myself physically at altitude.

Will this stop me from hiking at elevation?

Not one chance! Last summer alone my wife and I backpacked and hiked over 250 miles in Colorado. Since the incident I now make sure that I have the ability to seek lower elevation if needed during all our outdoor adventures. I also pay close attention to how I am feeling as we ascend.

Should I take acetazolamine/Diamox before backpacking trips because of my past AMS episode?

A meta-analysis in 2015 looked at 7021 individuals to see if a past episode of AMS warranted medication to prevent future AMS episodes. Interestingly enough they found that the literature did not support it. This was in part due to the sporadic nature of AMS 3I personally do not take a prophylactic medication before hiking at elevation, but this would be a great conversation to have with your medical provider if you are at all concerned.

Chris Whitcomb, PA-S3
University of Colorado
Class of 2018

References

  1. Wu TY, Ding SQ, Liu JL, Jia JH, Chai ZC, Dai RC. Who are more at risk for acute mountain sickness: a prospective study in Qinghai-Tibet railroad construction workers on Mt. Tanggula. Chin Med J. 2012;125(8):1393-400.
  2. Beidleman BA, Tighiouart H, Schmid CH, Fulco CS, Muza SR. Predictive models of acute mountain sickness after rapid ascent to various altitudes. Med Sci Sports Exerc. 2013;45(4):792-800.
  3. Macinnis MJ, Lohse KR, Strong JK, Koehle MS. Is previous history a reliable predictor for acute mountain sickness susceptibility? A meta-analysis of diagnostic accuracy. Br J Sports Med. 2015;49(2):69-75.