Category Archives: Hyperbaric Therapy

What is Acute Mountain Sickness?

Acute mountain sickness (AMS) is a condition that can occur when individuals ascend to high altitudes rapidly, typically above 2,500 meters (8,200 feet). The symptoms of AMS are due to the body’s struggle to adapt to the decreased oxygen levels at higher elevations. More specifically, the symptoms are caused by cerebral vasodilation that occurs in response to hypoxia, in an attempt to maintain cerebral perfusion.1

The typical symptoms of AMS include headache, nausea, vomiting, anorexia, and fatigue. In children the symptoms are less specific including increased fussiness, crying, poor feeding, disrupted sleep, and vomiting. Symptom onset is usually 6-12 hours after arrival to altitude but this can vary.

AMS affects children, adults, males and females equally, with a slight increased incidence in females. It is difficult to believe, but physical fitness does not offer protection against AMS. However, people who are obese, live at low elevation, or undergo intense activities upon arrival to elevation are at increased risk.1

Descending

Descending and decreasing altitude is a vital treatment for people with severe symptoms of AMS. By decreasing altitude there will be more oxygen in the air and symptoms will not be as severe..2 

Oxygen

Since the main cause of AMS is hypoxia, oxygen supplementation is an effective treatment when descent is not wanted or possible. Supplemental oxygen even at .5L to 1L per hour can be effective in reducing symptoms.It can be prescribed for short periods of time or to be used only during sleep  In the central Colorado Rockies, this may be a practical solution for “out of towners” who have traveled up to the town of Leadville (10,158’/3096m) for vacation, but in an austere environment supplemental oxygen may not be a reasonable treatment option. There should be symptomatic improvement within one hour.

Acetazolamide

Acetazolamide is a carbonic anhydrase inhibitor which causes increased secretion of sodium, potassium, bicarb, and water. This mechanism of actions lends beneficial to the treatment of AMS because it decreases the carbonic anhydrase in the brain. 3There is evidence to support the use of acetazolamide in the prevention of AMS, but minimal evidence pointing towards it’s role in treatment. Dosing is inconsistent but is usually prescribed at 125-250mg BID.

Hyperbaric Therapy

Many people consider hyperbaric chambers to be large structures in hospitals, however there are portable and lightweight hyperbaric chambers that can be used in austere environments or during expeditions. The mechanism of action of hyperbaric therapy is a simulated decrease in elevation, of approximately 2500 meters. These chambers will remove symptoms within approximately one hour of use but symptoms are likely to return. They are useful in the field but not frequently required in a hospital setting.1

  1. https://www.uptodate.com/contents/acute-mountain-sickness-and-high-altitude-cerebral-edema?search=acute%20mountain%20sickness&source=search_result&selectedTitle=1~15&usage_type=default&display_rank=1#H35
  2. https://my.clevelandclinic.org/health/diseases/15111-altitude-sickness
  3. https://www.uptodate.com/contents/acetazolamide-drug-information?search=acetazolamide%20altitude&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2#F129759

High Altitude Sleep Disorders … A Thing of the Past?

The fundamentals of vitality include food, water, air, shelter, and sleep. Sleep, though often underappreciated, can influence our physical and mental  health,  complex and easily impacted by outside factors. Living at a  high altitude may be wonderful but what is gained in beauty and adventure, is compromised with  reduced quality sleep. With increasing elevation comes more nighttime awakenings,  brief arousals, nocturnal hypoxemia, and periodic breathing. Light  sleep increases and slow-wave and REM sleep decrease.

The current gold standard for diagnosis of suspected sleep disorders includes polysomnography:  seven or more streams of data at a hospital or sleep center. The SleepImage  System allows for more flexibility with children, adolescents, and adults. Currently,  Dr. Chris Ebert-Santos of Ebert Family Clinic in Frisco, Colorado, USA (9000′) is using this technology primarily to assess some of the most common  forms of Sleep Breathing Disorders and secondly, to analyze the percentage of oxygen  desaturation of her patients while in their homes. 

The SleepImage System measures several variables that construct a summary for each  individual. Sleep quality is generated using Sleep Quality Index (SQI) biomarkers. Pathology  markers measure sleep duration, efficiency, and latency. Central Sleep Apnea (CSA) and Obstructive Sleep Apnea (OSA) are assessed together as Sleep Apnea Hypoxia Index (sAHI). Periodic and fragmented sleep pathology are reported and can be used to assess disease  management long-term. 

Recently, the clinic analyzed Patient X’s sleeping patterns without and with  supplemental oxygen. The theory: adding a steady flow of oxygen to the  nightly sleep regimen reduced the total amount of time desaturating and severity of sleep  breathing disorders. On the night preceding treatment, Patient X experienced an SQI of 17  (expected >55) and efficiency at 95% (expected >85%) for overall sleep quality. Sleep  opportunity demonstrated a 0h:02m latency (expected <30m), and duration of 5h:47m (expected  7-9h); sAHI was marked as severe for both 4% and 3% desaturation with values at 34 and 61,  respectively (severe= >30.0 in adults). Fragmented sleep was at 55% (expected <15%) and  periodicity at 22% (expected <2%). Lastly, Patient X spent 25% of his night’s sleep under 90%  SpO2, 18% under 88% Spo2, and 4% under 80% SpO2. Ideally, a healthy night’s sleep should  aim to remain above 90% SpO2 for the majority of the time in bed. 

When oxygen supplementation was introduced, improvements were observed. Sleep quality  showed a slight change, SQI increased to 31 (previously 17, expected >55), and efficiency  decreased to 87% (previously 95%; expected >85%) while remaining at a target value. Sleep  opportunity showed a slight increase during latency to 0h:12m while remaining within the  expected value of <30mins; duration jumped to 8h:14m but that could be attributed to an early  bedtime. Fragmented sleep remained in the severe range but decreased by 5%; periodicity improved to 0%, removing it from both the severe and moderate range. The most notable  improvement was observed with sAHI, both the 3% and 4% desaturation categories improved to the moderate range with values of 9 and 14, respectively. Time under 90% SpO2 also improved  to only 4% throughout the night and 0% below 88% SpO2. 

Since data is collected while patients sleep, skewed results from the placebo effect can be  reduced or eliminated. Increased duration could be attributed to longer time in bed, as mentioned  above, and should be examined more in-depth longitudinally. Latency for sleep increased with  oxygen treatment but that could be attributed to discomfort from the nasal cannula or greater  tiredness one day over the other. Similarly, latency should be examined longitudinally.

The results seen with this patient are common in our population.  Many people report they slept significantly better their first night on oxygen. Many patients studied on and off oxygen show the same dramatic decrease in their sleep apnea index. The gold standard for treating sleep apnea involves a mask to increase the pressure in the airway and prevent the collapse and narrowing that occurs during relaxation and sleep.  Does the supplemental 2 liters per minute of oxygen cause enough increased airway pressure to prevent airway narrowing? Supplemental oxygen would not be considered for an intervention or treatment in other locations where sleep studies are conducted because they are not usually showing significant hypoxia. Does the improvement in oxygen, even if it is the difference between oxygen saturations in the high 80’s and low 90’s increasing to the mid 90’s affect the balance of oxygen and carbon dioxide in a way that changes the incidence of apnea and drive to breathe during sleep?

Long-term, this easy-to-use SleepImage System can assess sleep disorders  across all age groups and contribute to long-term management for many people living at altitude. Oxygen, a simple intervention that is widely available and relatively inexpensive, requiring no special visits to fit and adjust, has the potential to  improve symptoms and sleep greatly. 

References

  • Introduction to SleepImage https://sleepimage.com/wp-content/uploads/Introduction-to-SleepImage.pdf
  • Diagnosis and treatment of obstructive sleep apnea in adult https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714700/
  • Sleep and Breathing at High Altitude https://pubmed.ncbi.nlm.nih.gov/11898114/#:~:text=Sleep%20at%20high%20altitude%2 0is,REM%20sleep%20have%20been%20demonstrated.measure

Ashley Cevallos is a second-year Physician Assistant student at Red Rocks Community College in Arvada, CO. She received her undergraduate degree from  University of Maryland, Baltimore County. Before PA school, she worked as a vestibular technician and research coordinator for Johns Hopkins department of Otolaryngology. She was born in Ecuador and raised in Maryland. In her free time, she enjoys hiking, yoga, discovering new plants/animals and picnics. 

Of Mice & Men at Altitude: This Podcast Will Kill You, Episode 115 “Altitude Sickness: Balloons, though?’

This comprehensive review of the biology, history and physiology of high elevation starts with a fatal hot air balloon ride that happened in 1875. The passengers went past 8,000 meters, or over 26,000 feet and lost consciousness. The balloon failed and fell to the ground but not until after the altitude related hypoxia killed two out of the three passengers. Currently the legal limit in many parts of the world for how high a hot air balloon can fly is around 3,000 feet.

The pressure the atmosphere exerts on our bodies, the barometric pressure, that is the pressure of all gasses including oxygen, decreases as we go higher in altitude. As seen in the graph below, the higher you go, the less barometric pressure. This leads to a decrease in the partial pressure of oxygen. The percentage of air that contains oxygen is 21% at any height. However, the oxygen molecules are less dense higher up so with every breath our bloodstream gets less oxygen which is called hypoxemia. Our tissues then get less oxygen as well which is called hypoxia.

Our bodies go through a process called acclimatization to help us adjust to these changes at altitude. The first change we see is increased ventilation. The decrease in oxygen stimulates chemoreceptors in our aorta and carotid which then regulate the depth and rate of our breathing, making our breaths deeper and faster to try and get more oxygen in. This involuntary action is called the hypoxic ventilatory response (HVR). There is an inverse relationship between carbon dioxide and oxygen in the alveoli of our lungs. Since we breathe deeper and faster at altitude we breathe out more carbon dioxide, hence increasing the partial pressure of oxygen. Discussions about carbon dioxide, how it affects the kidneys, what happens to hemoglobin, cardiac output, are very helpful for a deeper understanding of what happens in the body at altitude.

There are three major illnesses that can occur when our bodies do not go through acclimatization properly: acute mountain sickness (AMS), high altitude cerebral edema (HACE), and high altitude pulmonary edema (HAPE). AMS is the most common. It is seen within 4-12 hours of ascending to altitudes higher than 2500 meters. A headache is needed to diagnose AMS in most scoring systems used for diagnosis, other symptoms include GI symptoms, dizziness, fatigue, and sleep disturbances. HACE is a progression of these symptoms. It is dangerous since as the name implies it is cerebral edema or swelling. There may be signs of altered mental status, ataxia, and can progress to coma and death within 24 hours. According to the blog there is not much understanding/consensus of which part of the acclimatization process goes wrong to cause these potentially fatal  outcomes, nor is there a clear answer about whether you can have one without the other. The onset of HAPE is slower, occurring between 1-5 days, rarely after a week. There are more pulmonary symptoms as the name suggests such as excessive shortness of breath, chest tightness, cough, sputum production. The podcast discusses in detail theories about the causes of HAPE.

The history of altitude sickness goes back to Ancient Chinese, Greek and Roman medical texts. “The ancients also observed that the rarity of the air on the summit of Olympus was such that those who ascended it were obligated to carry sponges moistened with vinegar and water and to apply them now and then to their nostrils as the air was not dense enough for their respiration.” This suggested they believed there was no water vapor in the air at high altitudes making it difficult to breathe. Some other texts mentioned “headache mountains” suggesting the naming of mountains based on side effects they experienced at these high altitudes.

The podcast hosts reviewed landmark experiments showing the effects of hypoxia on people and animals. Robert Boyle and Robert Hooke’s experiments using an air pump to investigate an animal’s response to different air pressures. Results showed that survival was shortened at lower pressures. Hook also created a decompression chamber so humans could test low pressure effects. He personally sat in there for 15 minutes at 570 torr, the equivalent of 7,800 ft (2400 m), and experienced some hearing loss. Anton Lavoisier performed another experiment, he compared blood that passed through the lungs with fresh air with venous blood. Freshly ventilated blood was bright red and venous blood was darker red, suggesting something changes in our blood when having contact with fresh air. Another scientist, Mayow, put a mouse on a stool inside of a bowl of water then covered it with a glass bell, creating a sealed environment. The same thing was done with a candle.

Results were that the water levels inside the bell rose as the animal breathed or as the candle burned, suggesting the mouse or the flame was consuming some part of the air which the water came in to fill. He demonstrated there must be at least two different components in air, one of them being necessary for both animal respiration and combustion. Later on he also suggested this “component” is taken up by the lungs and passed into the blood where it is involved during heat production and muscle movement, explaining why breathing increases during exercise, as we need more of this substance in the air to move.

Mountaineering and hot air balloons led to further understanding during the 1700 and 1800s. Paul Bert used animals in hypobaric chambers, simulating the low pressure of high altitude. He found that illness and death always occurred at a certain level of blood oxygen. The same thing happened when air pressure was kept at sea level but the overall oxygen concentration was lowered. Bert also suspected that people and animals at high altitude produce more red blood cells for increased oxygen absorption. Now we know this is true. Plasma volume drops 15-25% which causes a rise in the concentration of hemoglobin. This occurs within around 1-2 days of ascent to altitude. This triggers erythropoietin which stimulates red blood cell production. However, this occurs over days or weeks. So if you are at high altitude for less time your body will not get to this step. (Read “Red Flags At Altitude blog about lab values seen in the patient portal).

To understand altitude effects many researchers now study small animals.  The highest mammal is the yellow-rumped leaf-eared mouse, at 21,000 ft, studied by Jay Storz and colleagues. North American deer mice are the only mammals above tree line in the Rocky Mountains.  University of Denver Assistant Professor of Biology Jon Velotta does studies comparing these high dwellers to their lower altitude cousins. With colleagues Catie Ivy andGraham Scott they were able to show that the breathing rate, red blood cells and hemoglobin increase proportionately to decreasing partial pressures of oxygen.

Anyone interested in the nitty gritty of altitude will learn from this podcast, as well as many other medical topics covered by Colorado-based hosts Erin Allmann Updike MD, PhD and epidemiologist and Erin Welsh PhD disease ecologist and epidemiologist.  Each podcast is accompanied by original recipes for a themed cocktail and nonalcoholic drink.

Claudia Ismerai Reyes is a PA student at Red Rocks Community College in Arvada, Colorado. She grew up in Phoenix, Arizona and went to Arizona State University to get her bachelor’s degree in biology. The first in her family to graduate college. She moved to Colorado a little over five years ago and worked as a CNA at Denver Health for over two years before getting into PA school. In her free time, she likes to watch movies with her husband, trying new places to eat, or playing board games at home. 

HAFE: High-Altitude Flatus Expulsion

Often, at high altitude we hear complaints of gas pain and increased flatus in our infant population. Parents often wonder, are we doing something wrong? Is my child reacting to breastmilk, or showing an intolerance to certain foods?  Actually there is another explanation for increased flatus and gas pain in the high-altitude region of Colorado. 

The term HAFE was coined by Dr. Paul Auerbach and Dr. York Miller and published in the Western Journal of Medicine in 1981. Their discovery began In the summer of 1980, when the two doctors were hiking in the San Juan Mountains of Colorado on a quest to summit three 14ers. During their ascent they noticed that something didn’t smell right! As the pair continued to emit noxious fumes, they began to put their scientific brains to work and discovered HAFE. The symptoms include an increase in frequency and volume of flatus, or in other terms an increase in toots! We all have familiarity in watching our bag of potato chips blow up when reaching altitude or our water bottle expanding as we head into the mountains. This reaction is due to a decrease in barometric pressure. Based on Boyle’s law, decreased barometric pressure causes the intestinal gas volume to expand, thus causing HAFE (Skinner & Rawal, 2019).

A graphic illustrating how Boyle's law works: the pressure of a gas increases as its volume decreases.

To my surprise, a gas bubble the size of a walnut in Denver, Colorado (5280 ft) would be the size of a grapefruit in the mountain region of Summit County, CO (8000+ ft)! Trapped gas is known to lead to discomfort and pain. The use of simethicone may have merit in mitigating the effects of HAFE. Simethicone works by changing the surface tension of gas bubbles, allowing easier elimination of gas. This medication, while benign, can be found over the counter and does not appear to be absorbed by the GI tract (Ingold, C. J., & Akhondi, H., 2022). 

While this phenomenon may not be as debilitating as high-altitude pulmonary edema (HAPE), it deserves recognition, as it can cause a significant inconvenience and discomfort to those it inflicts. As the Radiolab podcast explained in their episode The Flight Before Christmas , expelled gas in a plane or car when driving up to the mountains can be embarrassing. While HAFE can be inconvenient, it is a benign condition and a matter of pressure changes rather than a disease or pathological process. We would love to talk more about HAFE at Ebert Family Clinic if you have any questions or concerns!

A bald eagle flies over a misty settled into the valley against the blue-green pine forest of a mountain.
A bald eagle flies toward its nest atop a bare lodgepole pine.

As always, stay happy, safe, and healthy 😊

References

Auerbach, P. & Miller, Y. (1981). High altitude flatus expulsion. The Western Journal of Medicine, 134(2), 173-174.

Chemistry Learner. (2023). Boyle’s Law. https://www.chemistrylearner.com/boyles-law.html

Ingold, C. J., & Akhondi, H. (2022). Simethicone. StatPearls Publishing. 

McKnight, T. (2023). The Flight Before Christmas [Audio podcast]. Radiolab. https://radiolab.org/episodes/flight-christmas

Skinner, R. B., & Rawal, A. R. (2019). EMS flight barotrauma. StatPearls Publishing. 

Interview with Retired Fighter Pilot Andrew Breithaupt: Altitude Earth and Sky

I had the honor of interviewing Andrew Breithaupt who recently retired from US Customs and Border Protection in the Department of Homeland Security where he served as an Air Interdiction Agent piloting multiple types of aircraft.  He currently serves as a Lieutenant Colonel on active duty for the US Army, stationed in Minneapolis, MN.  He began Army flight school in 1992 to become a helicopter pilot, ultimately qualifying in 4 different types of Army helicopters including the UH-1H, OH-58, AH-1, and the AH-64 Apache for which he became an Instructor Pilot training new Army aviators at Fort Rucker, Alabama.  Later he began his transition to fixed-wing aircraft in the civilian community. After nearly 10 years of Army active duty and multiple overseas tours, he was selected to enter service for US Customs and Border Protection where he served as a federal law enforcement agent for over 20 years, retired in December of 2021.  He holds his commercial pilot license for single engine & multi-engine fixed wing as well as rotorcraft with instrument privileges and aircraft type ratings. He has over 30 years of aviation experience and more than 2,500 hours of flight time over his career. I sat down to chat with him about his accomplished career and learn more about his aviation and altitude expertise.

In army flight school, specifically aeromedical training, he was taught the effects of aviation on the body. One of the first lessons they learned in their training was how to recognize the early warning signs of hypoxia. These include shortness of breath, dysphoria, nausea, vomiting and lightheadedness. This type of training is often done in altitude chambers, so trainees can experience these effects before they are in the air, including how aviation can affect your vestibular senses. A position change as simple as looking down to change a radio or instrument can completely disorient a pilot due to the change in direction of the fluid within the inner ear against the cilia. This can lead to the sensation that the plane has rotated and flying sideways. They are taught to trust their instruments because an overcorrection can lead to what they teach in flight school as a “death spiral.” The training is often done in a Barany Chair and simulates vestibular senses experienced during flight.

Elevation in Summit County, Colorado ranges from 7,947 feet to 14,270 feet, the highest peak being Gray’s Peak. With people living as high as 11,200 feet, as Andrew does at his home in Blue River located south of of Breckenridge, CO.  Andrew shared some very interesting aviation altitude requirements which might surprise some. He spent much of his career operating non-pressurized helicopters and Federal Aviation Regulations prohibited him from going between 10,000 feet to 12,000 feet for more than 30 minutes without oxygen. When flying above 12,000 feet, pilots are required to have supplemental oxygen regardless of the amount of time spent at that elevation depending on the category of aviation being conducted such as commercial operations. This is according to the CFR (Code of Federal Regulations) Part 135 which governs commercial aircraft operations. How interesting is it that pilots have these regulations, yet many people who live in Summit County or those summiting 14ers (peaks at 14,000 ft. or above) are at or above these elevations with no supplemental oxygen on a daily basis. When flying private aircraft, CFR part 91.211 specifies flight crew can fly without pressurization or supplemental O2 below 14,000 feet and passengers below 15,000 feet.

While in the Army, Andrew would rarely operate aircraft above 8,000 feet and would typically not have supplemental oxygen on board. They were trained to begin descent immediately if they were to notice the early signs of hypoxia. Keeping a pilot’s license requires strict annual or even semi-annual FAA physicals and continued training to ensure their bodies can withstand the effects of aviation.  As you can imagine those holding these licenses are some of the most fit men and women in the country.  Andrew rarely felt the effects of altitude even with altitude changes as great as 8,000 feet coming from sea level. He would typically remain at these elevations for two hours or less piloting non-pressurized aircraft.

To give some perspective, when you hop on a commercial flight for your next adventure these planes typically fly around 28,000 to 36,000 feet of elevation. When beginning the ascent, the aircraft pressure stabilizes at 6,000 to 8,000 feet, approximately when the dreaded “popping of the ears” is felt. Supplemental oxygen and quick donning masks are required on all these aircraft in case depressurization were to occur due to the rapid hypoxia which would occur at such high altitudes.

Andrew moved to Summit County in November of 2021 from Stafford, VA with his wife and five sons ages 24, 22, 19, 14, and 11.  Andrew and his family spent a significant amount of time in Summit County for snowboarding and skiing competitions and quickly fell in love with the area prior to spending the last 5 years living in Stuttgart, Germany. This is when they decided one day, they would become full-time residents of the county. They moved here for the “people, climate and lifestyle,” a combination I am learning is hard to beat outside of Summit County. With ski and snowboard season right around the corner, he and his family are excited to get back out on the slopes.   Andrew currently travels between his home in Blue River and Minneapolis for his position in the Army. With each trip back he feels his body more quickly adjust to the altitude changes. Thank you for your service Andrew, and welcome to the community!

Ellie Martini grew up in Richmond, VA and is currently a second-year Physician Assistant student at Drexel University in Philadelphia, PA. She completed her undergraduate degree at The College of William and Mary in Williamsburg, VA where she received her BS in Biology. Before PA school she worked as a rehab tech and medical scribe at an addiction clinic. In her free time she enjoys hiking, biking, group fitness, traveling and spending time with friends and family. 

Sleep at High Altitude

Have you thought of what it would be like living in the mountains year-round? Medical professionals find it is important to look at what living at high elevations can do to the human body. One activity heavily affected is sleep. As mentioned in previous blog posts, visitors often have trouble falling asleep, staying asleep, and feeling rested in the morning. A recent study published in Physiological Reports measured the effects of sleeping patterns at high elevation. The participants experienced a simulated elevation inside a hyperbaric chamber. This mimicked sleeping at elevations of 3000 meters (9,842 feet) and 4050 meters (13,287 ft) for one night and then sleeping at sea level for several nights to establish a baseline for the research participants. Participants exercised for 3 hours in the hyperbaric chamber allowing researchers to observe how the lower oxygen concentrations affected their ability to perform strenuous tasks. The group that slept in a simulated 4050 meter environment had an increased heart rate that was 28% higher and an oxygen saturation 15% lower than the 3000 meter participants. When comparing sleep itself, the group at 4050 meters had 50% more awakening events throughout each night. This goes along with previous research on this blog that states that people who sleep at high altitude complain of insomnia and frequent awakening when first arriving at high elevation.

These numbers increase even more dramatically when compared to participants at sea level. Related symptoms reported during this study showed the incidence of acute mountain sickness occurred in 10% of the participants at a simulated 3000 meters, increasing to 90% at 4050 meters. As mentioned, the average heart rate increases and oxygen saturation decreases as the elevation increases. The baseline heart rate at sea level was 62 beats per minute, increasing to 80 at 3000 meters and 93 at 4050 meters. Ideally health care providers aim to oxygenate vital organs by keeping the oxygen saturation level between 92-100%. The lower the oxygen level the harder it is to keep organs properly profused. Age, health status, and place of residence are taken into consideration when examining study reports. Oxygen saturation at sea level was 98% decreasing to 92% at 3000 meters and 84% at 4050 meters.

As mentioned in a previous post by Dr. Neale Lange, sleeping at high altitudes can be hard due to the frequent awakenings and nocturnal hypoxia caused by the low oxygen levels at higher elevation. This study reiterates these findings with the results of the average oxygen saturation at 3000 meters being around 92%. Dr. Lange also found that sleep apnea was often more prominent and had more negative effects on the human body in environments that were lower in oxygen. This study agrees with that statement finding that people with sleep apnea had twice the hourly awakenings compared to those at higher elevation that did not have sleep apnea. Dr. Lange also pointed out that the contribution of hypobaric atmosphere to symptoms at altitude as opposed to pure hypoxemia is unknown. Frisco, Colorado is at an elevation of 2800 meters. Ongoing research at Ebert Family Clinic including residents and visitors along with laboratory studies such as this one can guide decisions about interventions and treatment to improve sleep and help us enjoy our time in the mountains.

References

  1. Figueiredo PS, Sils IV, Staab JE, Fulco CS, Muza SR, Beidleman BA. Acute mountain sickness and sleep disturbances differentially influence cognition and mood during rapid ascent to 3000 and 4050 m. Physiological Reports. 2022;10(3). doi:10.14814/phy2.15175
  2. Blog post: HOW DO YOU DEFINE A GOOD NIGHT’S SLEEP?:AN INTRODUCTION TO THE SLEEPIMAGE RING, AN INTERVIEW WITH DR. NEALE LANGE

Casey Weibel is a 2nd year student at Drexel University, born and raised in Pittsburgh, Pennsylvania. He went to Gannon University for his undergrad and got a degree in biology.  Before PA school, Casey was an EMT.  He enjoys hiking and kayaking and is a big sports fan. 

Wound Healing at High Altitude: Hyperbaric Therapy, A Patient’s firsthand experience with post-surgical wound healing in Summit County

The nuances of wound healing at high altitude is a topic that has already been explored on this platform (see Eric Meiklejohn’s “Wound Care at Altitude”). Identifying the impact that impaired oxygen delivery can have on healing time, tissue regeneration, and infection rates offers great insight into the roles health care providers can assume to support our high-altitude patients. For this interview, I was able to speak directly with  a Summit County resident who had firsthand experience with these processes.

I’ve heard a bit about your experiences with wound healing at high altitudes I will ask some preliminary questions,. This entire experience was more of a marathon than a sprint. How long have you been living at this altitude, and how old were you at the time of your procedure? I’d lived at high altitude for over twenty-six years before I was diagnosed with breast cancer. I was Fifty-three when I had my surgery. I was in great shape, exercising regularly, and eating really well.

Tell me about your procedure: Well, the initial procedure was in January 2018 down in Denver. I had a bilateral mastectomy done to remove the cancerous tissue, and bilateral expanders were inserted during that surgery so that down the line I could have implants placed. Within the first week we started noticing some necrotic changes to my incisions, and that they were not healing well. The expanders were inflated with air, and it was thought that my traveling back to high altitude from Denver could have increased the pressure inside them.  By the end of week one I went back in to see my doctor, who deflated my expanders pretty significantly.

Have you ever been diagnosed with a medical condition that could affect wound healing, such as Diabetes or Hypertension? No. Breast Cancer was my first real medical diagnosis.

Had you ever had surgery while living at this altitude before? And if so, what was the outcome? Yes, I’d had surgery for an umbilical hernia and that went very well. No complications at all, everything healed just fine. I’d also had tendon damage in my right hand after a fall, and I recovered really well after that surgery at this same altitude.

Regarding healing after your mastectomies, describe the anticipated wound healing time and wound care directions. The time estimate for  recovery was four weeks. I was to rest for two weeks, increase activity slightly for the second two weeks with minimal physical therapy, then by the end of that fourth week the projection was that I would be mostly recovered. I was given strict precautions against heavy lifting, restricting arm movements, and not driving. For wound care I was doing daily dressing changes, not submerging the area in water, and applying Silvadene cream twice daily.

Following the removal of the expanders, what was the rest of the healing process like? Over the next two months I cared for my wounds at home. They were open and oozing, and over time the daily dressing changes and medication applications became quite taxing, both physically and emotionally. It took a lot out of me, and really interfered with my day-to-day life…not to mention the pain. On March 9th, 2018 I underwent an incision revision and resection procedure for the necrotic tissue. At that point my breast tissue had manifested itself as far as which parts were healthy and which would die, so they went in and resected the areas that were not viable. On the left side I lost most of the top surface of the breast, including the entire nipple area. Two weeks after that, I had a [chemo therapy] port placed in my arm  so I could begin treatments, but that incision also had a difficult time healing. That eventually led to a one month delay in my chemo therapy.

In March and April the incisions on the right breast eventually healed, but because of all the tissue loss and necrosis on the left side those wounds did not heal. There was still a lot of drainage from that breast and it was mostly still open so I had to keep the bandage on. By early May (after this wound had been open for 5 straight months) my doctor and I started seeing more signs of infection to that breast, so around May 12th of 2018 he called me in for an emergency procedure and I had the expander completely removed from my left breast. I continued chemo and eventually that left side began to heal in the absence of the expander.

During this time, from March until I finished chemo in August, the port site never healed. The whole reason behind having the port placed was so it could heal over and I could go back to a normal life between chemo sessions. But instead I walked around with a bandage for those six months because my port site remained open. I had Her2 positive cancer, so after my six months of chemo I needed to continue taking Herceptin for one additional year. I opted to have the port removed after six months and had an IV placed every three weeks for my treatments. It was very hard on my veins, but I felt I had no choice.

In late August, with the port out and the left expander out, the last of my open wounds really started healing. I started looking at what I could do to help my tissue heal even better- my thought was that when this is all done and I am all well healed I would like to have my expanders placed and inflated again, but I don’t want to have to go backwards through this process. I did all this research, and that’s where I learned about hyperbaric therapy. That changed everything for me.

What did you learn about Hyperbaric therapy, and what was your experience with it? I did a lot of independent research online and came up with two options that I wanted to discuss with my doctor. The first was a topical option for applying oxygen directly to the wound, which was a very complicated and involved process -and the second was hyperbaric therapy.

I discussed this with my oncologist who was very familiar with hyperbaric chamber treatment centers in Denver, and who wrote me a referral to be evaluated at the one in Presbyterian St. Luke’s Medical Center. I was evaluated by their team, showed them all the photos I had been taking throughout this entire ordeal, and they seemed hopeful that they would be able to help me. I really wish I’d gone there sooner.

My plan was to use this to help me recuperate a little bit so I could give the expander one more shot on the left side. After having the left expander placed, the second phase of my plan was to get another course of hyperbaric therapy to aid in recovering from that procedure. It was eventually prescribed and accepted by insurance, who approved 27 hyperbaric sessions following my surgery.

I underwent the left expander placement in February of 2019, observed the same restrictions, and had identical at-home wound care as my initial surgery in January 2018, but with the addition of hyperbaric therapy my results were night and day. The day after surgery I started hyperbaric, and in so much less pain. I was off all pain medications within 48hours. I was able to get out, walk, function in my daily life, and the tissue healed really well. It was amazing! I felt great, had tons of energy, and it was just a completely different experience. It was nothing short of miraculous.

What was your hyperbaric chamber treatment like? It was five days a week in Denver. Being there was for me a huge learning experience. There were people there being treated for diabetic wounds, hearing loss, adjunct therapy for various types of cancer, joint and tendon disease, tissue necrosis, concussions, head trauma, and so many other things. I hadn’t known that this therapy could be utilized in all these different areas.

After your successful left expander placement, how was your transition to breast implants? Months after the left expander was reinserted, I did transition to breast implants (summer 2019) but even then, I insisted on post operative hyperbaric therapy. I was only approved for ten sessions that time, but the results were the same. Rapid healing time, noticeable decrease in pain after starting therapy, and the ability to function throughout the day. Of all the factors that played a role in this process for you, what variable would you most want to adjust? Honestly, I just wish I’d started hyperbaric therapy sooner. If there was a way to get providers who work with high altitude dwellers to recommend hyperbaric treatment as a part of their primary or secondary treatment course, that’s the one thing I would change.Well, I am very happy to know that despite the difficulty you experienced in this process, you are now three years post op, well healed, and satisfied with your results. Thank you again for sharing your story. My pleasure. If my sharing can help someone else find hyperbaric therapy or open them up to alternative methods of treatment sooner so as not to have to experience what I went through in those first few months, then it was all worth it.

Janell Malcolm is a second year Physician Assistant student in the Red Rocks PA Program in Arvada, Co. A Jamaica native, she loves the ocean, tropical fruit, and 100 degree weather. You will likely find her spending her free time with family or reading/re-reading Jane Eyre. Her personal and career goals are geared towards providing adequate medical care to underserved communities. Special interests post graduation: Labor & Delivery, General Surgery.