Ultrasound itself is not an unfamiliar technology to most, having been used in obstetrics and gynecology (OB/GYN) for many years. Newer research is now showing that ultrasound imaging may have good applicability in both high-altitude pulmonary edema (HAPE) and high-altitude cerebral edema (HACE). Pulmonary edema (or fluid in the lungs) is identified as “B-lines” or “comet tails” and is easily distinguishable on ultrasound (Gargani, 2019).
Using ultrasound to measure the diameter of the optic nerve can also assist with a diagnosis of HACE, as an increased diameter indicates increased intercranial pressure from HACE (Shookahi et al., 2020). The advantages of ultrasound over traditional imaging include being highly portable and usable in austere environments (such as back country), no radiation like many other imaging techniques, accurate for diagnosing pulmonary edema and other conditions, and takes little time for providers to master. Ultrasound also has a significant cost savings as the machine itself is relatively inexpensive, does not require special construction like adding lead to an Xray room, and is applicable in many other diagnoses (including kidney disorders, gallbladder disease, pneumonia, trauma, muscular disorders, and gynecological complaints). Ultrasound also has the capability to differentiate types of pulmonary edema, as well as other lung disorders, and generally much faster than a traditional Xray as there is no radiographic lag between clinical onset and ultrasound changes.
Pulmonary Edema on Xray Mayo Clinic, 2024
In HAPE, an increase in the number of B-lines indicates an accumulation of fluid in the lungs. Healthy individuals acclimating to the altitude have been shown to have a physiologic increase in B-lines during the first 4 days of high-altitude exposure as well as pregnant individuals having an increase in their baseline b-line count. Keeping these differences in mind, an increase of B-lines of more than 3 in a lung field, in more than 2 lung fields indicates an increase in extravascular lung water (EVLW) and could support a diagnosis of HAPE. Correlating this with clinical signs and symptoms of altitude sickness (HA, dizziness, fatigue, shortness of breath, nausea/vomiting), as well as HAPE (hypoxia, cough, exercise intolerance) can support a more rapid diagnosis of HAPE as well as assist with deciding need for oxygen and/or altitude descent (Yang et al., 2018; Heldeweg et al., 2022). The provider can also use the ultrasound to monitor resolution of the pulmonary edema to help support decisions to discontinue oxygen or to encourage altitude descent. Those with comorbidities such as heart failure can also be monitored for early signs that their treatment plan is not adequately addressing their EVLW and can receive correction prior to needing hospitalization (Chiu et al., 2022).
HACE, as a disorder including altered mental status, ataxia, headache, loss of consciousness, and seizures, is a serious complication of high altitude. As the symptoms suggest, rapid identification is key to reducing other problems, including death, from HACE. The use of ultrasound is relatively new in assisting with diagnosis, but an increase in optic nerve diameter on ultrasound above 5 millimeters indicates that there is a good chance of brain swelling (or cerebral edema) and subsequent increased intracranial pressure. Identifying this early allows for rapid decision making the descent to a lower altitude or using a more rapid evacuation method (helicopter or rapid ground transport). Increased intracranial pressure can also result from head injury or trauma and thus can be useful in settings where an injury may have occurred. This makes this a tool that could be invaluable in search and rescue operations or for first responders (Shookahi et al., 2020).
Keeping these benefits in mind, remember that diagnostic imaging is a support tool and not the complete answer to all health problems. Hopefully soon we will see this tool being used with more frequency to help aid our healthcare providers in determining a more accurate cause of symptoms!
References
Chiu, L., Jairam, M. P., Chow, R., Chiu, N., Shen, M., Alhassan, A., Lo, C.-H., Chen, A., Kennel, P. J., Poterucha, T. J., & Topkara, V. K. (2022). Meta-Analysis of Point-of-Care Lung Ultrasonography Versus Chest Radiography in Adults With Symptoms of Acute Decompensated Heart Failure. The American Journal of Cardiology, 174, 89–95. https://doi.org/10.1016/j.amjcard.2022.03.022
Heldeweg, M. L. A., Smit, M. R., Kramer-Elliott, S. R., Haaksma, M. E., Smit, J. M., Hagens, L. A., Heijnen, N. F. L., Jonkman, A. H., Paulus, F., Schultz, M. J., Girbes, A. R. J., Heunks, L. M. A., Bos, L. D. J., & Tuinman, P. R.. (2022). Lung Ultrasound Signs to Diagnose and Discriminate Interstitial Syndromes in ICU Patients: A Diagnostic Accuracy Study in Two Cohorts*. Critical Care Medicine, 50(11), 1607–1617. https://doi.org/10.1097/ccm.0000000000005620
Shokoohi, H., Pyle, M., Kuhl, E., Loesche, M. A., Goyal, A., LeSaux, M. A., Boniface, K. S., & Taheri, M. R. (2020). Optic Nerve Sheath Diameter Measured by Point-of-Care Ultrasound and MRI. Journal of neuroimaging : official journal of the American Society of Neuroimaging, 30(6), 793–799. https://doi.org/10.1111/jon.12764
Yang, W., Wang, Y., Qiu, Z., Huang, X., Lv, M., Liu, B., Yang, D., Yang, Z., & Xie, T.. (2018). Lung Ultrasound Is Accurate for the Diagnosis of High-Altitude Pulmonary Edema: A Prospective Study. Canadian Respiratory Journal, 2018, 1–9. https://doi.org/10.1155/2018/5804942
The hallmark concern for the body living at high altitude is low oxygen. We breathe in less, and thus less is sent throughout our blood stream to our tissues. We are quick to think about how this affects our heart and lungs, but what about our kidneys? What are our kidneys even responsible for?
Kidneys filter, reabsorb, and excrete our blood in the form of urine. They connect our cardiovascular system with our genitourinary system. The flow through the kidneys also helps monitor and adjust our blood pressure. Their importance is truly undervalued. When they receive less oxygen than preferred (hypoxia), they will become injured. Specifically, the glomerulus (term for the filter) will become affected. When this happens, it is not efficient at filtration, and protein will spill out into our urine (proteinuria), a key feature of High Altitude Renal Syndrome (HARS).
Zooming further in below
And even further…
Another issue involves uric acid, the chemical at fault for causing gout. Due to the filter injury sustained from low oxygen, uric acid excretion is affected. It can thus build up in our musculoskeletal system and other tissues. It is famous for causing red, swollen, and painful joints. The enzyme that helps create uric acid (xanthine oxidase) is also turned on by reactive oxygen species during hypoxia. This then causes further uric acid crystal deposition in our body. This can present in patients from adolescent years through adulthood, ranging from fleeting pain to amputations from severe bone infections. We have found that for younger patients, diet plays a lesser part than genetic predisposition and hypoxia.
So how is this treated? We are still researching the best course of action. We can treat with drugs that work by inhibiting the previously specified enzyme: xanthine oxidase. These include oral allopurinol, febuxostat, and even IV pegloticase infusions. But we are primarily focused on prevention and holistic care here, so we would prefer to use supplemental oxygen therapy for those that struggle to maintain oxygen saturations in the healthy ranges. Acetazolamide is also helpful in cases. This medication works to increase our respiratory drive, helping us breathe off CO2 and breathe in more oxygen. Contact us to see what method might be right for you.
This research was brought to us by a stroke of luck. A stranger on an airplane, and a son’s coworker. This stranger happened to be a nephrologist (kidney doctor) who is studying how altitude affects the kidneys. In working with him and his team at University of Colorado Anschutz, the team at Ebert Family Clinic in Frisco, Colorado (9000′) have been ordering broader lab panels (including uric acid) for their patients and seeking those with questionable renal labs. Another patient seen by the Ebert Family Clinic team has been severely impacted by gout. With multiple amputations before the patient’s 30th birthday, this case has motivated the health care team to prevent this from happening to others in their high altitude community.
Carter Odean is a third-year medical student at Rocky Vista University. He was born and raised outside of Denver, Colorado before heading to Gonzaga University in Spokane, Washington where he studied biology and completed research on an invasive bee species there while playing club lacrosse. After graduating in 2019, he then came back to Denver to complete his Master’s in Biomedical Sciences at Regis University. After Regis, he started as a Clinical Research Coordinator at Anschutz Medical campus, working on multiple Diabetes Mellitus Type 2 research trials. He is in the Rural & Wilderness Track which is his favorite part about school. He plans to work as a rural Pediatrician or Family Medicine Physician. In his free time, you can find him dirt biking, fly fishing, skiing, and relaxing with friends and family.
References
Schoene, R.B. “High altitude renal syndrome: polycythemia, hyperuricemia, microalbuminuria, and hypertension.” High Alt Med Biol. 2002 Spring;3(1):65-73. doi: 10.1089/152702902753639371. PMID: 11949751.
Bigham, A.W., Lee, F.S. “Tibetan and Andean patterns of adaptation to high-altitude hypoxia.” Hum Biol. 2014 Oct;86(4):321-37. doi: 10.3378/027.086.0401. PMID: 25700353; PMCID: PMC4438718.
Beall, C.M., Cavalleri, G.L., Deng, L., et al. “Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders.” Proc Natl Acad Sci U S A. 2010 Mar 9;107(25):11459-64. doi: 10.1073/pnas.1002443107. Epub 2010 Feb 22. PMID: 20176925; PMCID: PMC2895106.
Simonson, T.S., Yang, Y., Huff, C.D., et al. “Genetic evidence for high-altitude adaptation in Tibet.” Science. 2010 Sep 10;329(5987):72-5. doi: 10.1126/science.1189406. PMID: 20616233; PMCID: PMC3490534.
Schoene, R.B., Swenson, E.R. “Cobalt-Induced Chronic Mountain Sickness: Pathophysiological Mechanisms and Genetic Susceptibility.” High Alt Med Biol. 2017 Mar;18(1):1-5. doi: 10.1089/ham.2016.0106. PMID: 28145824.Baillie, J.K., Bates, M.G., Thompson, A.A., et al. “Endogenous urate production augments plasma antioxidant capacity in healthy lowland subjects exposed to high altitude.” Chest. 2007 Dec;132(6):S275. doi: 10.1378/chest.132.6.275. PMID: 18079246.
Yu, K.H., Wu, Y.J., Tseng, W.C., et al. “Risk of end-stage renal disease associated with gout: a nationwide population study.” Arthritis Res Ther. 2012 Jun 27;14(3):R83. doi: 10.1186/ar3818. PMID: 22738152; PMCID: PMC3446515.
Bhat, A., Deshmukh, A., Anand, S., et al. “Acute Myocardial Infarction due to Coronary Artery Embolism in a Patient with Severe Hyperuricemia.” J Assoc Physicians India. 2019 Nov;67(11):90-91. PMID: 31801335.
Khanna, D., Khanna, P.P., Fitzgerald, J.D., et al. “2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia.” Arthritis Care Res (Hoboken). 2012 Oct;64(10):1431-46. doi: 10.1002/acr.21772. PMID: 23024028.
Schoene, R.B., Swenson, E.R. “Treatment of Cobalt-Induced Chronic Mountain Sickness.” High Alt Med Biol. 2017 Mar;18(1):74-77. doi: 10.1089/ham.2016.0135. PMID: 28145823.
Schoene, R.B., Hackett, P.H., Henderson, W.R., et al. “High Altitude Medicine and Physiology, Fourth Edition.” CRC Press, 2007.
Burtscher, M., Mairer, K., Wille, M., et al. “Risk of acute mountain sickness in tourists ascending to 4360 meters by cable car.” High Alt Med Biol. 2004 Summer;5(2):141-6. doi: 10.1089/1527029041352154. PMID: 15265307.
Baumgartner, R.W., Bärtsch, P. “Chronic mountain sickness and the heart.” Prog Cardiovasc Dis. 2010 May-Jun;52(6):540-9. doi: 10.1016/j.pcad.2010.02.009. PMID: 20417390.
My love for hiking developed during my childhood explorations of the breathtaking landscapes of the Sierra Nevada. As I ventured into the rugged mountains and hiked along scenic trails, I couldn’t help but feel a deep connection with nature. However, my passion for hiking was not without its moments of caution. On several occasions, I witnessed the awe-inspiring yet intimidating power of lightning storms dancing across the vast mountain skies. These encounters instilled in me a profound curiosity about the risks associated with lightning strikes in high-altitude regions.
When I moved to Colorado for PA school, my awareness of the dangers posed by lightning strikes grew even stronger. The dramatic topography and frequent thunderstorms in Colorado amplify the risk for individuals exploring high-altitude areas. It was during my last clinical rotation at a burn unit that I had the opportunity to care for several patients who had been struck by lightning. Witnessing the effects firsthand fueled my determination to educate the public about the actionable steps they can take to stay safe during lightning storms.
Lightning strikes
Lightning possesses an immense amount of energy, with a voltage of over 10 million volts (in comparison, most car batteries measure 12.6 V).1 Additionally, a lightning bolt reaches incredibly high temperatures, reportedly up to 30,000 Kelvin (53540.33 F).1 Lightning injuries occur in different ways, including as direct strikes, side splash, contact injuries, or ground current.
Direct strikes are uncommon, accounting for only 5% of cases, and happen when a person is directly struck by lightning.2
Contact injuries occur when a person touches an object that is struck by lightning. 2
Side splash injuries occur when the current jumps or “splashes” from a nearby object and then follows the path of least resistance to reach the individual. These injuries make up about 1/3 of all lightning related injuries. 2
Ground current is the most prevalent cause of injury, accounting for half of all cases, and occurs when lightning strikes an object or the ground near a person and subsequently travels through the ground to reach the individual. 2
In Colorado, an average of 500,000 lightning flashes hit the ground each year. Based on data since 1980, lightning causes 2 fatalities and 12 injuries per year throughout the state.3According to data since 1980, lightning causes an average of 2 fatalities and 12 injuries annually throughout the state.3 Colorado ranked third in the United States for the number of lightning fatalities between 2005 and 2014, as depicted in Figure 1.
Fig. 1. Lightning fatalities by state. 3
The high number of injuries attributed to lightning in Colorado can be influenced by several factors. One of these factors is the easy access to high elevation terrain, such as 14ers (mountains with a peak elevation of at least 14,000 feet). This accessibility allows inexperienced outdoor enthusiasts to venture into potentially dangerous situations due to their lack of knowledge and preparation.
For instance, individuals who are not familiar with summer weather patterns may embark on a hike above the tree line late in the day, underestimating the risk of a storm forming. This lack of understanding puts them in an exposed and perilous position should adverse weather conditions arise.
Even with thorough preparation and extensive knowledge of weather patterns, it is still possible to find oneself in a situation where you have to weather a storm. Given that a significant proportion of Colorado’s hiking trails are located above the tree line, where appropriate shelter is sparse, hikers are more susceptible to lightning strikes in these exposed areas.
Pathophysiology of Lightning Strike Injuries
The overall ratio of lightning injuries to deaths is 10:1 and there is a 90% chance of sequelae in survivors.4 The primary mechanism of injury in lightning strikes is the passage of electrical current through the body. The high voltage and current can cause tissue damage through several mechanisms, including thermal injury, electrical burns, and mechanical disruption of tissues. The severity of the injury depends on factors such as the voltage and current of the lightning bolt, the duration of contact, and the pathway the current takes through the body.
Lightning strikes can cause various types of injuries, with cardiac and respiratory arrest being the most common fatal complications.5 The path of least resistance determines the flow of electricity through different organs in the body, with nerves being the most conductive, followed by blood, muscles, skin, fat, and bone. 5 When lightning strikes, the electrical surge can induce cardiac arrest and cessation of breathing by affecting the medullary respiratory center. As a result, most patients initially present with asystole and may progress to different types of arrhythmias, commonly ventricular fibrillation. 5
Interestingly, there have been case reports documenting successful resuscitation of lightning strike victims who were initially apneic and pulseless for as long as 15 to 30 minutes. 5This has led to the recommendation that in the immediate aftermath of a lightning strike, individuals who appear to be dead should be prioritized for treatment.
Superficial skin burns are experienced by around 90% of lightning strike victims, but deep burns are less common, occurring in less than 5% of cases. A characteristic skin manifestation of a lightning strike is the Lichtenberg figure, which is considered pathognomonic. Neurological symptoms can also occur, including keraunoparalysis, which is a transient paralysis affecting the lower limbs more than the upper limbs. This paralysis is often accompanied by sensory loss, paleness, vasoconstriction, and hypertension, and is thought to result from overstimulation of the autonomic nervous system, leading to vascular spasm. In most cases, this paralysis resolves within several hours, but in some instances, it may last up to 24 hours or cause permanent neurological damage. 5
Additionally, it is common for lightning strike victims to have a perforated tympanic membrane (eardrum) or develop cataracts immediately following the incident. These injuries to the ear and eyes are associated with the intense energy of the lightning discharge.6
What can hikers do to stay safe?
Preparation
Monitor weather forecasts: Stay updated on weather conditions before engaging in outdoor activities, especially in areas prone to thunderstorms. Pay attention to thunderstorm warnings or watches issued by local authorities. Having a mobile or handheld NOAA Weather Radio All-Hazards (NWR) can also be helpful as it can transmit life-saving weather information at a moment’s notice.
In Colorado most thunderstorms develop after 11 am, so it is best to plan your trip so that you are descending by late morning.7Fig. 2 shows number of lightning fatalities by time of day in Colorado between 1980 and 2020. The vast majority take place after the 11 am threshold.
Fig. 2 Lightning fatalities in Colorado by time of day3
What to Do If Caught in a Storm
If you can hear thunder, you are close enough to be struck by lightning. Lightning can strike up to 25 miles away from the storm. 7 Once you hear thunder, if possible quickly move to a sturdy shelter (substantial building with electricity or plumbing or an enclosed, metal-topped vehicle with windows up). Avoid small shelters, such as picnic pavilions, tents, or sheds. Stay sheltered until at least 30 minutes after you hear the last clap of thunder.
Fig 3. Areas to avoid when sheltering from lightning.
If you are outdoors and cannot reach a suitable shelter, avoid open areas, hilltops, and high places that are more exposed to lightning strikes. Seek lower ground and stay away from tall objects, such as trees, poles, or metal structures. Bodies of water, including lakes, rivers, pools, and even wet ground, are conductive and increase the risk of a lightning strike. Move away from these areas during thunderstorms. Separate group members by at least 20 ft as lightning can jump up to 15 feet between objects.
If a strike is eminent (static electricity causes hair or skin to stand on end, a smell of ozone is detected, a crackling sound is heard nearby), the current recommendation is to assume “lightning position”, pictured in Fig. 4.
Fig. 4. Lightning position8
To potentially reduce the risk of ground current injury from an imminent lightning strike, another strategy is to insulate oneself from the ground. This can be done by sitting on a pack or a rolled foam sleeping pad. However, it’s important to note that this and the lightning position should be considered a strategy of last resort and not relied upon as the primary means of prevention. Maintaining this position for an extended period can be challenging, and it’s crucial to prioritize seeking proper shelter and following established lightning safety guidelines to minimize the overall risk of injury. 5
Case Study
25 YO F presents to the Burn Unit as a transfer from Cheyenne Regional Medical Center s/p lighting strike. Patient (pt) was caught in a thunderstorm on a hike and sheltered under a tall tree. Suddenly, she felt like she was being lifted up into the air and then dropped. Pt had a brief (<5 sec) loss of consciousness (LOC). When she woke up, she was completely numb and couldn’t move any of her extremities. Witness (friend) states the lightning splashed from the tree to the pt. Pt denies hitting her head with the fall. She denies taking blood thinners. She has no past medical history (PMHx) or past surgical history (PSHx).
Physical exam
Neuro: AOX4, No CN deficit on exam, LE paralysis resolved, LE paresthesia improving but still present
HEENT: L ruptured tympanic membrane, hearing loss on L side
CBC, CMP, troponin were all WNL. Serum hCG negative. CK mildly elevated (222)
EKG showed NSR.
CXR, CT brain, and c-spine neg for acute injury
She was admitted to the UC Health burn center for observation with tele. Her lab work and vitals remained stable throughout her hospitalization. She was evaluated by the trauma team with a negative trauma work up. The day of discharge, she was tolerating a regular diet, ambulating and sating well on room air. She was deemed appropriate for discharge home without patient audiology and ophthalmology follow up.
References
1. US Department of Commerce N. Understanding lightning science. National Weather Service. April 16, 2018. Accessed July 8, 2023. https://www.weather.gov/safety/lightning-science-overview.
2. Cooper MA, Holle RL. Mechanisms of lightning injury should affect lightning safety messages. 21st International Lightning Detection Conference. April 19-20, 2010; Orlando, FL.
3. US Department of Commerce N. Colorado Lightning statistics as compared to other states. National Weather Service. March 4, 2020. Accessed July 7, 2023.https://www.weather.gov/pub/Colorado_ltg_ranking.
4. US Department of Commerce N. How dangerous is lightning? National Weather Service. March 12, 2019. Accessed July 8, 2023. https://www.weather.gov/safety/lightning-odds.
5. Chris Davis, MD; Anna Engeln, MD; Eric L. Johnson, MD; Scott E. McIntosh, MD, MPH; Ken Zafren, MD; Arthur A. Islas, MD, MPH; Christopher McStay, MD; William R. Smith, MD; Tracy Cushing, MD, MPH. Wilderness Medical Society Practice Guidelines for the Prevention and Treatment of Lightning Injuries: 2014 Update. WILDERNESS & ENVIRONMENTAL MEDICINE. 2014; 25, S86–S95
6. Flaherty G, Daly J. When lightning strikes: reducing the risk of injury to high-altitude trekkers during thunderstorms. Academic.oup.com. Accessed July 8, 2023. https://academic.oup.com/jtm/article/23/1/tav007/2635599.
7. NWS Colorado Offices – Boulder G. Colorado Lightning Awareness Week june 19-25, 2022. ArcGIS StoryMaps. June 25, 2022. Accessed July 8, 2023. https://storymaps.arcgis.com/stories/11d021f1b800429a869ead2dc32c0f96.
8. McKay B and K. How to survive A lightning strike: An illustrated guide. The Art of Manliness. April 25, 2022. Accessed July 8, 2023. https://www.artofmanliness.com/skills/outdoor-survival/how-to-survive-a-lightning-strike-an-illustrated-guide/.
Sophia Ruef is a Physician Assistant student at Red Rocks Community College in Arvada, CO. She grew up on the central coast of California and earned her Bachelor of Science degree inBiology with a concentration in anatomy and physiology from Cal Poly San Luis Obispo. She worked as an EMT and a tech in the Bay Area after her undergraduate education. In her free time, she enjoys hiking, backpacking, canyoneering, and spending time with family and friends.
Often, at high altitude we hear complaints of gas pain and increased flatus in our infant population. Parents often wonder, are we doing something wrong? Is my child reacting to breastmilk, or showing an intolerance to certain foods? Actually there is another explanation for increased flatus and gas pain in the high-altitude region of Colorado.
The term HAFE was coined by Dr. Paul Auerbach and Dr. York Miller and published in the Western Journal of Medicine in 1981. Their discovery began In the summer of 1980, when the two doctors were hiking in the San Juan Mountains of Colorado on a quest to summit three 14ers. During their ascent they noticed that something didn’t smell right! As the pair continued to emit noxious fumes, they began to put their scientific brains to work and discovered HAFE. The symptoms include an increase in frequency and volume of flatus, or in other terms an increase in toots! We all have familiarity in watching our bag of potato chips blow up when reaching altitude or our water bottle expanding as we head into the mountains. This reaction is due to a decrease in barometric pressure. Based on Boyle’s law, decreased barometric pressure causes the intestinal gas volume to expand, thus causing HAFE (Skinner & Rawal, 2019).
To my surprise, a gas bubble the size of a walnut in Denver, Colorado (5280 ft) would be the size of a grapefruit in the mountain region of Summit County, CO (8000+ ft)! Trapped gas is known to lead to discomfort and pain. The use of simethicone may have merit in mitigating the effects of HAFE. Simethicone works by changing the surface tension of gas bubbles, allowing easier elimination of gas. This medication, while benign, can be found over the counter and does not appear to be absorbed by the GI tract (Ingold, C. J., & Akhondi, H., 2022).
While this phenomenon may not be as debilitating as high-altitude pulmonary edema (HAPE), it deserves recognition, as it can cause a significant inconvenience and discomfort to those it inflicts. As the Radiolab podcast explained in their episode The Flight Before Christmas , expelled gas in a plane or car when driving up to the mountains can be embarrassing. While HAFE can be inconvenient, it is a benign condition and a matter of pressure changes rather than a disease or pathological process. We would love to talk more about HAFE at Ebert Family Clinic if you have any questions or concerns!
As always, stay happy, safe, and healthy 😊
Taylor Hollingsworth is finishing her final semester as a family nurse practitioner (FNP) student at Georgetown University. Originally from the east coast, Taylor plans to start her FNP career in North Carolina close to family. She has a passion for pediatric and family wellness and has worked as a pediatric intensive care unit nurse for 6 years! In her free time, Taylor loves to hike, fly fish, run, and spend time with her fiancé Logan.
References
Auerbach, P. & Miller, Y. (1981). High altitude flatus expulsion. The Western Journal of Medicine, 134(2), 173-174.
From backpacking and camping to skiing and snowboarding, there are plenty of activities outdoors in the Colorado high country. If you find yourself wandering around and lost without food in the mountains, there are several wild plants that you can eat.
However, before you consume the delectable greens, there are a few precautions to take.
Do not eat any wild plants unless you can positively identify them. There are iOS and Android apps that you can download prior to your hike to help distinguish plants, such as PictureThis and NatureID.
Be aware of environmental factors such as pollution or animal waste. Avoid popular wild animal gathering areas.
Make sure you’re not allergic to the plant by rubbing it against your skin and observing for a reaction. If so, do not eat the plant. Before ingesting a large quantity, eat a small amount and check for a reaction.
It may be difficult to cook if you did not come prepared with a portable stove, pots, and water, which could limit ways to enjoy vegetation. Here is a list of edible plants, how to identify them, where can they be found, and which part you can eat.
Wild plants
Dandelions (Taraxacum officinale): yellow ray florets that spread outward from center with toothy, deep-notched, hairless basal leaves and hollow stems. They can be found everywhere and anywhere. Every part of the dandelion plant is edible including the leaves and roots.
Pineapple Weed/ Wild Chamomile (Matricaria discoidea): the flower heads are cone-shaped and yellowish-green and do not have petals. Often found near walking paths and roadsides, harvest away from disturbed, polluted areas. If you’re feeling anxious about being lost, pineapple weed promotes relaxation and sleep and serves as a digestive aid.
Fireweed (Epilobium angustifolium): vibrant fuchsia flowers. Grows in disturbed areas and near recent burn zones. Eat the leaves when they are young as adult leaves can stupefy you. Young shoot tips and roots are also edible.
Wild onions (Allium cernuum): look for pink, lavender to white flowers with a strong scent of onion. They grow in the subalpine terrain and are found on moist hillsides and meadows. Caution: do not confuse with death camas. If it doesn’t smell like an onion and has pink flowers, it is not likely an onion.
Cattails (Typha latifolia or Typha angustifolia): typically 5-10 feet tall. Mature flower stalks resemble the tail of a cat. Grow by creek, river, ponds, and lakes. This whole plant is edible, from the top to the roots. Select from pollution-free areas as it is known to absorb toxins in the surrounding water.
Wild berries:
Wild strawberries (Fragaria virginiana): they are tiny compared to store-bought. Can be identified by their blue-green leaves; small cluster of white flowers with a yellow center; and slightly hairy, long and slender red stems.
Huckleberries (Vaccinium spp): They grow in the high mountain acidic soil and flourish in the forest grounds underneath small, oval-shaped, pointed leaves. They resemble blueberries and have a distinguishable “crown” structure at the bottom of the berry. They can be red, maroon, dark blue, powder-blue, or purple-blue to almost black, and they range from translucent to opaque.
Oregon grapes (Mahonia aquifolium): powder-blue berries, resembling juniper berries or blueberries, with spiny leaves similar to hollies that may have reddish tints.
Fun fact: The roots and bark of the plant contain a compound called berberine. Berberine has antimicrobial, antiviral, antifungal, and antibiotic properties.
Mushrooms
True morels (Morchella spp.): cone-shaped top with lots of deep crevices resembling a sponge. They will be hollow inside. A false morel will have a similar appearance on the outside but will not be hollow on the inside and are toxic. Morels are commonly found at the edge of forested areas where ash, aspen, elm, and oak trees live. Dead trees (forest wildfires) and old apple orchards are prime spots for morels.
Porcini (Boletus edulis): brown-capped mushrooms with thick, white stalks. Found at high elevations of 10,500 and 11,200 ft in areas with monsoon rains and sustained summer heat.
There are many more edible plants, flowers, berries, and mushrooms in the mountains. These are just 10 that can be easily identifiable and common in the Western Colorado landscapes. I recommend trying out the apps listed above and reading “Wild Edible Plants of Colorado” by Charles W. Kane, which includes 58 plants from various regions, each with details of use and preparation. Hopefully this post made you feel more prepared for your next adventure.
Resources:
Davis, E., 2022. Fall plant tour: Frisco, CO | Wild Food Girl. [online] Wildfoodgirl.com. Available at: <https://wildfoodgirl.com/2012/eleven-edible-wild-plants-from-frisco-trailhead/> [Accessed 10 July 2022].
McGuire, P., 2022. 8 Delicious Foods to Forage in Colorado | Wild Berries…. [online] Uncovercolorado.com. Available at: <https://www.uncovercolorado.com/foraging-for-food-in-colorado/> [Accessed 10 July2022].
Rmhp.org. 2022. Edible Plants On The Western Slope | RMHP Blog. [online] Available at: <https://www.rmhp.org/blog/2020/march/foraging-for-edible-plants> [Accessed 10 July 2022].
Lifescapecolorado.com. 2022. [online] Available at: <https://lifescapecolorado.com/2014/01/edible-plants-of-colorado/> [Accessed 10 July 2022].
Pfaf.org. 2022. Plant Search Result. [online] Available at: <https://pfaf.org/user/DatabaseSearhResult.aspx> [Accessed 10 July 2022].
Cindy Hinh is a second-year Physician Assistant student at Red Rocks Community College in Arvada, CO. She grew up in southern Louisiana and received her undergraduate degree in Biology from Louisiana State University. Prior to PA school, she was a medical scribe in the emergency department and an urgent care tech. In her free time, she enjoys baking, cooking, going on food adventures, hiking, and spending time with family and friends.
Have you thought of what it would be like living in the mountains year-round? Medical professionals find it is important to look at what living at high elevations can do to the human body. One activity heavily affected is sleep. As mentioned in previous blog posts, visitors often have trouble falling asleep, staying asleep, and feeling rested in the morning. A recent study published in Physiological Reports measured the effects of sleeping patterns at high elevation. The participants experienced a simulated elevation inside a hyperbaric chamber. This mimicked sleeping at elevations of 3000 meters (9,842 feet) and 4050 meters (13,287 ft) for one night and then sleeping at sea level for several nights to establish a baseline for the research participants. Participants exercised for 3 hours in the hyperbaric chamber allowing researchers to observe how the lower oxygen concentrations affected their ability to perform strenuous tasks. The group that slept in a simulated 4050 meter environment had an increased heart rate that was 28% higher and an oxygen saturation 15% lower than the 3000 meter participants. When comparing sleep itself, the group at 4050 meters had 50% more awakening events throughout each night. This goes along with previous research on this blog that states that people who sleep at high altitude complain of insomnia and frequent awakening when first arriving at high elevation.
These numbers increase even more dramatically when compared to participants at sea level. Related symptoms reported during this study showed the incidence of acute mountain sickness occurred in 10% of the participants at a simulated 3000 meters, increasing to 90% at 4050 meters. As mentioned, the average heart rate increases and oxygen saturation decreases as the elevation increases. The baseline heart rate at sea level was 62 beats per minute, increasing to 80 at 3000 meters and 93 at 4050 meters. Ideally health care providers aim to oxygenate vital organs by keeping the oxygen saturation level between 92-100%. The lower the oxygen level the harder it is to keep organs properly profused. Age, health status, and place of residence are taken into consideration when examining study reports. Oxygen saturation at sea level was 98% decreasing to 92% at 3000 meters and 84% at 4050 meters.
As mentioned in a previous post by Dr. Neale Lange, sleeping at high altitudes can be hard due to the frequent awakenings and nocturnal hypoxia caused by the low oxygen levels at higher elevation. This study reiterates these findings with the results of the average oxygen saturation at 3000 meters being around 92%. Dr. Lange also found that sleep apnea was often more prominent and had more negative effects on the human body in environments that were lower in oxygen. This study agrees with that statement finding that people with sleep apnea had twice the hourly awakenings compared to those at higher elevation that did not have sleep apnea. Dr. Lange also pointed out that the contribution of hypobaric atmosphere to symptoms at altitude as opposed to pure hypoxemia is unknown. Frisco, Colorado is at an elevation of 2800 meters. Ongoing research at Ebert Family Clinic including residents and visitors along with laboratory studies such as this one can guide decisions about interventions and treatment to improve sleep and help us enjoy our time in the mountains.
References
Figueiredo PS, Sils IV, Staab JE, Fulco CS, Muza SR, Beidleman BA. Acute mountain sickness and sleep disturbances differentially influence cognition and mood during rapid ascent to 3000 and 4050 m. Physiological Reports. 2022;10(3). doi:10.14814/phy2.15175
Blog post: HOW DO YOU DEFINE A GOOD NIGHT’S SLEEP?:AN INTRODUCTION TO THE SLEEPIMAGE RING, AN INTERVIEW WITH DR. NEALE LANGE
Casey Weibel is a 2nd year student at Drexel University, born and raised in Pittsburgh, Pennsylvania. He went to Gannon University for his undergrad and got a degree in biology. Before PA school, Casey was an EMT. He enjoys hiking and kayaking and is a big sports fan.
Frostbite is an injury caused by freezing of the skin and underlying tissue. The main pathophysiology of frostbite is ischemia. Basically, where there is blood flow there is heat and where there is no blood flow there is no heat to that area. The vasoconstriction and loss of blood flow to the skin predispose the skin to becoming frozen. Heat transfer depends on blood flow and blood flow depends on sympathetic nerve tone. In our extremities, there are only nerves that cause vasoconstriction. Exposure to cold or a drop in the body’s core temperature can induce vasoconstriction from these sympathetic nerves in which decreases the amount of blood flow to the extremities to keep the central aspect of the body warm and central organs well-perfused to help to maintain the body’s core temperature.
Frostbite usually occurs in the apical areas of the skin also called glabrous, which is Latin for smooth because these areas have no hair. These areas include the face, palmar surface of the hand, and the plantar surface of the foot. These areas of the skin are rich in arteriovenous anastomoses, which are low-resistance connections between the small arteries and small veins that supply the peripheral blood flow in the apical regions of the skin. These anastomoses allow the blood to flow into the venous plexus of the skin without passing through capillaries, and play a major role in temperature regulation.
Causative factors of frostbite include inadequate insulation, circulatory compromise, dehydration, moisture, trauma, and immobility. All of these factors in combination can result in frostbite.
The behavioral risk factors include mental illness, alcohol/drug use, fear, apathy, and anxiety. All of these risk factors can contribute to frostbite, generally, from poor self-care.
Frostbite is said to kill twice during its two phases that occur. The first phase is the frozen phase in which ice crystals form in the intracellular compartment at about 29 degrees Fahrenheit. These ice crystals will suck the fluid out of the endothelial cells and become enlarged causing the endothelial cells to lyse from dehydration and interrupt microcirculation. The second phase is the rewarming phase in which the skin thaws and is at risk for microthrombi production and necrosis due to prolonged injury to those endothelial cells.
The usual phase at which we see frostbite in a clinical setting is after thawing, in which the skin looks flushed pink, red, with the appearance of blebs that form one hour to twenty-four hours after thawing. These blebs can rupture spontaneously in 4-10 days and shortly after, a cast-like eschar forms. Then the eschar usually sheds in 21-30 days.
Frostbite is classified based on the depth of tissue damage, from superficial with no tissue damage being mild and deep tissue damage including muscle, bone, or tendon being classified as severe frostbite. The mildest form of frostbite is called frostnip. Frostnip is freezing of the skin but there is no actual freezing injury and doesn’t cause permanent skin damage.
What can you do in the field for Frostbite?
It is important to provide supportive care with IV or PO hydration to prevent dehydration. If the affected area is frozen with no imminent rescue, it is recommended to thaw the area with warm water and try to avoid refreezing. You can give NSAIDs, such as Ibuprofen, 400 mg every 8 hours, or ketorolac 30 mg IV. If the person is at altitude and their oxygen saturation is low you can provide oxygen. However, the individual must be taken to the nearest hospital for further treatment, especially in cases of severe frostbite.
New research studies have been exploring the use of thrombolytics in the treatment of frostbite. Many of the research studies have shown that IV TPA or iloprost may be of benefit to administer in a hospital setting. However, iloprost is not approved for IV use in the United States and other prostacyclins have not been studied for the use of frostbite as of yet. There are current literature and guidelines that have been published for the prevention and treatment of frostbite, however, more research is needed to further support standardized treatment of all patients with frostbite with thrombolytic therapy. Hopefully, these new studies will encourage more research into using thrombolytics and prostacyclins for frostbite.
In the meantime, it would be best to stay warm to prevent frostbite. Tips to help in frostbite prevention include:
Limit time you’re outdoors in cold, wet, or windy weather. Pay attention to weather forecasts and wind chill readings. In very cold, windy weather, exposed skin can develop frostbite in a matter of minutes.
Dress in several layers of loose, warm clothing. Air trapped between the layers of clothing acts as insulation against the cold. Wear windproof and waterproof outer garments to protect against wind, snow, and rain. Choose undergarments that wick moisture away from your skin. Change out of wet clothing — particularly gloves, hats, and socks — as soon as possible.
Wear a hat or headband that fully covers your ears. Heavy woolen or windproof materials make the best headwear for cold protection.
Wear socks and sock liners that fit well, provide insulation, and avoid moisture. You might also try hand and foot warmers. Be sure the foot warmers don’t make your boots too tight, restricting blood flow.
Watch for signs of frostbite. Early signs of frostbite include red or pale skin, prickling, and numbness.
Eat well-balanced meals and stay hydrated. Doing this even before you go out in the cold will help you stay warm.
Lauren Pincomb Apodaca is a second-year Physician Assistant student in the Red Rocks Community College Physician Assistant Program. Originally from Las Cruces, New Mexico, she graduated from New Mexico State University with a Bachelor of Science in Biochemistry and a Bachelor of Art in Chemistry. After obtaining her undergraduate degrees, she was accepted as a Ph.D. fellow in Pharmacology at the University of Minnesota where she conducted research in a biomedical laboratory doing cancer research. She then realized that she wanted to make a difference in people’s lives through hands-on experience rather than working in a laboratory. She went back to New Mexico and received her certification as a nursing assistant and started from the ground up to reach her ultimate goal of being a Physician Assistant. She has enjoyed living in Colorado and the many outdoor activities that Colorado has to offer. Her favorite are kayaking, fishing, and hiking. She is looking forward to graduating soon.
References:
Hill, C. (2017, December 22). Cutaneous Circulation – Arteriovenous Anastomoses. Retrieved September 27, 2020, from https://teachmephysiology.com/cardiovascular-system/special-circulations/cutaneous-circulation/
Frostbite. (2019, March 20). Retrieved September 27, 2020, from https://www.mayoclinic.org/diseases-conditions/frostbite/symptoms-causes/syc-20372656
Another Spring season in Colorado. The ski resorts have closed early per the COVID-19 protocol, along with most other establishments. Even on the normal schedule, most ski resorts would have been closed for the season by now, bringing more people to the backcountry. But this year seems to have seen an upswing in backcountry activity, where many people are going to stay active while limiting exposure to others. Just over a week ago, a team of 20 search and rescue volunteers rescued a 26-year-old man who had fallen hiking on steep terrain around St. Mary’s Glacier, Colorado. Last year, a total of 10 snowmobilers were killed in the backcountry in avalanche slides. Only one was wearing a beacon.
Backcountry and Avalanche Safety resources, thankfully, are growing more plentiful and accessible, and last winter, we published an article on the basics. Earlier this winter, I spoke with backcountry athlete and web development colleague Dan Beerman, whose experience in the backcountry really broadened as a backpacking guide in New Mexico during the summers 12 years ago, followed by a position as a climbing instructor.
When I was a backpacking guide, I was on the search and rescue if I didn’t have a crew … We had a radio, so we were the point of contact for finding and doing extraction. That’s when I learned the most and was exposed to the most. I took my Wilderness First Responder course in 2014, and that was through the Wilderness Medical Institute.
Dan’s also a fellow hut tripper, and we’ve been talking about doing one together (when we’re on the other side of the current pandemic). He’s spent the last two New Year’s in huts, backcountry skiing or snowshoeing tours. This past year, he skied Buffalo Mountain’s Silver Couloir, in the Gore Range, and made an attempt at a couloir on Mt. Torrey’s. And there have got to be some good “couloir” puns out there.
I have aspirations to do the Colorado trail quickly, but I don’t know if I wanna do that in a competitive way or just recreationally backpack it. It’s hard to balance summer objectives, or climbing objectives vs. winter backcountry goals vs. alpine mountaineering objectives.
And he makes a great point:
In Colorado, your recreation is so close to becoming high-consequence all of the time! If the weather changes from the trailhead, that could be a really big problem.
I’m familiar. Nothing really teaches you as much or as quickly as getting caught in Colorado’s extreme weather patterns.
Avalanche Safety
Dan took an Avalanche Awareness and Safety class through Colorado Mountain School, held up in Rocky Mountain National Park over two field days after two nights of class in Boulder. His main takeaway:
Check an avalanche conditions snow report daily. Observing the snowpack over the seasonis going to make your confidence on the day of your excursion a lot higher. I’d had no context for why avalanches were happening, where and why it’s dangerous. Having that lens through which to view weather events in terms of avalanche conditions is so valuable. It’s an intuitive thing about paying attention to the weather.
This is my first season getting out at Copper, for example, and they all have that double-black diamond terrain in the back bowls that are labeled ‘EX’ on it. There’s a sign that says, ‘Ski with a partner,’ and I just thought, ‘Oh, shit, that sign should probably be much bigger!’
Beacon, shovel, probe are the mandatory avalanche terrain items — you’re putting other people at risk if you don’t have [them], because even if you observe a slide, you can’t do anything about it. Additionally, if you don’t have a beacon in a slide, others can’t find you. You’re not contributing to a rescue, nor can you be rescued. In Colorado, there’s an increasing awareness for that. I typically will bring that with me all the time, it’s just always in my ski bag. Having some snacks, having some water, those are the kinds of things: you should never not have them.
Training
I’ll take the goals of the expedition and plan accordingly. If I’m doing a ski trip, I’ll wanna get out and do hikes with weight or runs where I’m doing elevation several times. I like to do six weeks out, of four weeks of training and two weeks of tapering down.
Nutrition
I tend to be in a constant attempt to gain weight. On the Pacific Crest Trail I tried to gain weight prior, eating a lot of fatty foods, that kind of thing. Jonathan and I came up with this metric: calorie-per-dollar-per-ounce. Lightweight food that’s affordable, easy to ingest, easy to prepare, and you aren’t having to burn a lot to carry that with you to the backcountry.
[On the trail], peanut butter is always a winner. Olive oil is one of the highest calorie-per-ounce [food]. I have literally drank it before, but just add it to everything. I do eat a lot of standard trailmix, it’s easy and accessible. I’m a big fan of pumpkin seed mix or stuff with chocolate in it. I like CLIF bars. I do not like Luna bars because I’ve eaten so many of them. I can’t eat pop tarts anymore because they used to be in the meals that were issued when I was a guide. Snickers bars are a great calorie-per-dollar-per-ounce deal. I eat a Snickers bar or two before bed when I’m sleeping at altitude so my body has calories to stay warm.
I’ll make these mass-gainer complex food supplements. It’s like protein powder, but it also has carbs, like a workout and performance powder. And I would add that to water with coffee, and that would be a breakfast while hiking. There’s a lot of different kinds of powders and mixes you can add, but when you’re in calorie-burning mode, I do recommend this. If you’re hiking 20+ miles in a day or 4000+ feet of elevation in a day, you’re burning greater than 4000 calories, so you really have to eat more than you think you can.
Acclimatization
I wouldn’t say that I had HAPE (high altitude pulmonary edema) or HACE(high altitude cerebral edema) … Definitely, especially when I was younger … I would travel from 4000′ to 10,000′ in a 24-hour period. I’ve actually had search and rescues where someone was having night-terrors or hallucinations [due to HAPE or HACE]. I was a backountry professional for the Boy Scouts at a camp at 10,800′ (one of the first backcountry camps, in New Mexico). I’ve experienced dizziness, nausea, insomnia, weakness of the knees, elevated heart rate … and I’m a runner, I’m in decent shape. But you should acclimatize before setting out on a trip.
One last piece of advice,
Learn the Leave No Trace principles. We live in a state where impact is so concentrated that the more that everybody knows, the more likely it will be there for the next generation.
Dan and his backpacking, backcountry cohorts keep a blog full of breathtaking landscapes and telling captions on CaptainsofUs.com.
There will be plenty of time to escape to the backcountry again after the risks of COVID-19 have subsided. The current time is a good time to start preparing mentally. Know before you go.
Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.
“I’ve been here 25 years,” Sinclair shares with me over coffee at the Red Buffalo in Silverthorne, Colorado (9035’/2754 m). “Born and raised on the East Coast in Philadelphia.” The software company he had been working for moved him out to Colorado Springs. He hadn’t ever skied in his life until then. Shortly after, “on a whim”, he moved up to Summit County and started working on the mountain as what we used to call “Slope Watch”, the mountain staff often in yellow uniforms monitoring safe skiing and riding on the mountain. After a month, he got really bored, “and I said, ‘How do I get to be a patroller?'”
Sinclair then went to paramedic school to get qualified as an Emergency Medical Technician, then spent 19 years as an EMT and 9 years as a Medic. For the last six years, he’s worked for the ambulance service in Summit County, one of Colorado’s highest counties, with towns at above 9000′. He has also worked as a ski patroller at Copper Mountain, Keystone, and Park City (Utah). This year is the first he hasn’t been patrolling in 18 years. During the summer, he is a wildland fire medic, where he often works with crews that are shipped in from lower elevations, including sea level.
Although he’s decided to take this season off, he still maintains a very active relationship with the outdoors, travelling around the backcountry on expeditions to remote mountain cabins, and has made a recent trip to Taos, New Mexico (6969’/2124 m). He’s witnessed his share of altitude complications.
What are the most common altitude-related complications you see?
You see the families coming up to go skiing … Usually 90% of them are fine. Altitude doesn’t seem to bother them at all – they’re either healthy enough or lucky enough. They get in, they ski, they get out. But there’s that one family or that one couple that just don’t acclimatize. They don’t realize that they don’t acclimatize, and the rest of their group doesn’t realize. A couple of days go by and they think, ‘Geez, I feel awful,’ then they go ski, or do something active, and their condition is exacerbated. Or ‘Geez, I haven’t slept,’. you get that story over and over.
And you’re having this conversation on the hill as a patroller?
Or they’ve called 911 on their way [up to the mountains]. They have no idea. Just no idea. I ask them what they’d had to eat. They had a donut or a pastry or just coffee before the plane ride. I ask themwhen was the last time they peed. You’re trying to find the physiology of what’s happened.
I tell them, ‘You need to sit down or go back to your condo. You need liters of water. You need liters of Gatorade. No fried foods, no alcohol, no coffee. No marijuana. Let your body catch up. Wherever you’re staying, tell them you need a humidifier. Put it in every bedroom, crank it up and leave it on. You’re gonna have trouble sleeping.’
And they never wanna hear it. They never wanna take a day off, but by the time you see them, they’ve taken the day off anyway, because there’s no way they’re getting back up there!
Sinclair also expresses some frustration with the lack of resources provided by the ski industry itself:
How do you educate them? The marketing people don’t want to. Because if they have to spend a day in Denver [to acclimate], that’s one less day up here [at the ski resort]. They don’t want to publicize that [altitude sickness] can happen, that it’s common. People ask, ‘How often does this happen?’ Easily, at any resort in a day, Patrol probably sees 20 – 25 people, whether they called, they walked in, you skied by them and started talking to them. ‘You’re dehydrated. You’re at altitude. It means this …’ The resorts don’t want that many to know, otherwise, you’re gonna go to Utah or California, where it’s lower.
You get such misinformation. ‘At 5000 ft., you have 30% less oxygen.’ No, the partial pressure is less, there is still 21% O2 in the air. You just have to work harder to get the same volume. The real physiology of what’s going on is systemic. [People experiencing altitude sickness] don’t know why they feel like crap. They think it’s because they’ve been drinking too hard.
How do you mitigate their symptoms on the mountain?
We do a lot, but it’s reactive, not proactive. I hate to bash the oxygen canisters, but it’s not doing anything for you. It’s not gonna make you feel better, other than what you’re sucking up. At 10,000′, it’s questionable. We’ll be at the top of Copper [Mountain] giving them two to four liters of oxygen, then they’ll ski down and feel great.
Sinclair refers to the Summit County Stress Test, which was the first I’d heard of it:
You’re 55, you’re 40 – 50 lbs. overweight, and you come up for your daughter’s wedding. You walk over to Keystone [Ski Resort], you take the gondola over, then all of a sudden, you find out you have a heart condition. You find out whatever else you have going on. We’ve done it over and over and over. They go ski, they call us at 3 in the morning, we find out they’ve got a cardiac issue, or they’ve irritated the pulmonary embolism they’ve had for years.
I had a guy last year, at the Stube at Keystone for lunch.
Keystone’s Alpenglow Stube is a reputable restaurant that sits in the resort’s backcountry at 11,444′ (3488 m).
He had some food, alcohol, he’s having a great day. Ski patrol gets a call, ‘Hey, my husband doesn’t feel well.’ This guy looks bad, sitting on the couch, sweating profusely, and he can hardly tell what’s going on. It’s the classic presentation of an inferior heart attack.
‘I don’t have any heart conditions. I saw my cardiologist.’ You saw a cardiologist, but you don’t have any heart conditions?!
And there are a lot we don’t see. People who go home because they think they have the flu.
Have you seen any rare or surprising complications?
We see HAPE (High Altitude Pulmonary Edema) now and again. That seems to be a walk into the hospital where [their blood oxygen saturation is] at 50 – 52. We’re not in the zone to see HACE (High Altitude Cerebral Edema). We’re just not at the altitude.
HACE is more typical above more extreme elevations, above 11,000′. Colorado’s highest peaks are just above 14,000′. Most ski resorts in Colorado are below 12,000′.
I’ve only seen one HAPE case on the hill. In their 50s. You listen to their lungs, and they’re getting wonky. A guy who was reasonably fit, but you look at him and go, ‘Hm, this is bad.’ But he was responsive and talking. Then you start seeing the things like the swaying, getting focused on something else [in the distance]. One of those [situations] where you’re like, ‘Let’s get out of here.’ [We need] tons of oxygen. Again, ‘I didn’t feel good yesterday, but I decided to go skiing today.’ He was sitting at the restaurant at the top of Copper [Mountain].
People do not realize that their diabetes, their asthma, their high blood pressure, things that they commonly manage at home, are exacerbated at 9000′. By the time they realize it, they’re calling 911. At that point, your best bet is to get out of here.
What tools or instruments do you use the most as a paramedic and ski patroller?
Cardiac monitor. It’s got a pulse oximeter. [Also] simple things you ask. ‘Hey, do you know what your blood pressure is?’ I use a stethoscope all the time. Sight and sound. Are they talking to me? Are they having a conversation with me? Are they distracted by what’s happening to them? When was the last time they peed? Was it regular color? Did it smell stronger than usual?
People ask, ‘How much water do I need?’ How much water do you drink in a day? If I’m outside and I’m moving, I probably have 10 liters. If I’m on a roof laying shingles, I probably have 4 or 5 liters before lunch. It’s those little tools. You don’t even have to touch somebody.
Do you have any personal recommendations for facilitating acclimatization at altitude?
Workout, be in shape, go harder than you normally do that month before you get here. Get the cardiovascular system more efficient before you get here. If you have any kind of medical concerns, make an appointment with your doctor and say you’ll be at 10,000′ to sleep. Just ask, ‘What do I need to do?’ The day before you get on the plane, stop drinking coffee and start drinking water. Hydrate before you get here. They humidifier thing. Make sure the place you’re going has one. Find out. Go to Walmart and spend $15 to buy one.
Watch your diet. Just so your body’s not fighting to get rid of fat and crap.
When we’re getting ready for a hut trip, we are mostly vegetarian (although we do eat meat), but we ramp protein up a week prior, pushing more chicken, more red meat. We tend to eat fish normally, but there’s always at least one fish meal at the hut. We don’t do crappy food at the hut. I don’t care if I have to carry another 10 lbs. In addition to going to the gym, go for a skin, go to 11,000 – 12,000′ for a couple hours. Ramp up the altitude work.
What do you eat on the trail?
Pre-cooked sausage, usually some kind of chicken sausage. Cheese. Whole grain tortillas, and if we’re feeling spunky, some kind of hot sauce or pico [de gallo]. For me, it’s just a handful of nuts and raisins. If I feel like something else, I’ll throw in some chocolate or white chocolate. I hate the packaging, the processed foods, the bars. Somebody usually makes granola for on-the-way-out food. And I tend to carry dried fruits. Lots of peaches during Palisade peach season. I used to take a lot of jerky.
A recent topic that comes up alot in altitude research at our clinic is Aging.
I have to work harder to stay at the same place. I’m sitting here and I can feel my right knee. I was at a 15″ [of snow] day in Taos, and I caught something [skiing]. It’s been weeks, and it’s not weak or anything, but I just know. It takes longer. I find I need more sleep. I was a 4 or 5 hour a day guy for a long time. Now I’m at 7. The days I get 8 are awesome. Luckily enough, I’m still healthy, fit. If I’m up at night, it doesn’t shatter my day. Haven’t slept on oxygen yet. Don’t want to find out.
He laughs.
As I get older, I’m adding more supplements: fish oil, glucosamine, glutine (for eye health). My eyes are bad anyway, and I’m constantly standing outside against a big, white mirror (the snow). And I’m cautious of the bill of a hat vs. a full-on brim during the summer. Other than my face, everything’s covered during the winter. The color of the bill on your hat can be way more reflective. A black bill will cut the reflection. Little things.
I’ve rounded out my workouts. They’re more whole-body. I concentrate on cardio. I’m conscious that I’m not as flexible as I was. I’d like to say we’re regularly going to yoga, but at least we’re going.
The gauge for me is you go on a hut trip with our friends in the middle-age category, but we’ll take some younger folks [too]. I kinda monitor who’s doing what – chopping firewood, who’s sitting more than who. It’s not out of pride. I need to realize.
I’m colder. You start to notice. It’s not that your feet are cold, it’s that your calves are cold. I succumbed to boot heaters a few years ago.
Year after year, in every season, visitors from all over the state and all over the world come to Colorado’s high country. For many of them, it’s the highest elevation they’ve ever visited, and often ever will. The dryness, the elevation, the air pressure, the intense sun exposure and the lack of oxygen demand a lot of compensation from the body. Sinclair’s experiences at altitude are consistent across every conversation I’ve had with physicians, athletes and other professionals when it comes to preparing your body to be active at altitude, from getting plenty of water to controlling the speed of your ascent to any elevation above 7000′ to consulting with a specialist regarding any pre-existing cardiac or respiratory conditions to how much oxygen one needs to mitigate symptoms of altitude sickness to decreasing elevation in case of an emergency. Any one of these experts will also tell you that the best ways to prepare your body for altitude is to get plenty of sleep, exercise regularly, and limit foods containing a lot of oil, grease and fat that will demand more from your body.
Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.
Section House sits at 11,481′ (3499 m), on Boreas Pass, just south of Breckenridge, Colorado. It isn’t the highest hut in the Summit Huts system, but its unique location and history is what makes it one of the most challenging.
Many of the huts in the Summit and 10th Mountain Division systems sit on a hillside, below tree line, which provides a significant amount of weather mitigation. Section House is right at the tree line, on the pass, which means any wind and weather will likely be funneled right into you. And because you are in one of the highest counties in the United States, weather is highly variable.
I’ve done this hut in a blizzard before, arriving to find the padlock on the front door was frozen shut. That may have been the most I’d ever despaired in my life up until then.
Even in great weather, however, the temperature alone is a liability. When we set out from the trailhead this time, it was sunny and relatively balmy for December, in the 30’s (Fahrenheit). But the temperature in the shade can be several degrees lower, and as the sun sets below the Ten Mile Range, the temperature starts to drop by the tens of degrees really quickly.
The Stats
Distance: a little over 6 miles; GPS and some maps may differ by tenths of a mile. If you tell your friends 6, they may resent you.
Timing: the same hike has taken me a couple hours with no weight on my back besides water, on well-packed snow. This time, it took over an hour a mile, including frequent breaks, thanks to all the weight I was carrying and pulling. Additionally, we constantly had to redistribute weight among sleds and backpacks to relieve shoulders and keep sleds from tipping over. If you decide to pull a sled, keep the weight low and as evenly distributed as possible. The other very limiting factor was the last half of the trail was covered in at least a couple feet of unpacked, fresh powder. Our lead was breaking trail in snowshoes.
While the grade going back down to the trailhead isn’t steep enough to keep momentum without skating, it is significantly easier and faster, and took us half the time even after waiting for moose to safely cross our path.
Elevation gain: about 1100′.
Capacity: 12 people.
Packing
I’ve pulled a sled both times I’ve done this hut. I don’t regret it, but it is challenging at best in calm weather. Unless you are going for more than a couple nights, I’d recommend packing everything into a backpack.
Because the elevation gain is so gradual, the challenge with weight is the distance. Pack your weight so it will still be comfortable on your shoulders after three miles. The advantage of pulling a sled was having less weight on my shoulders, but after several miles, even minimal weight can dig into your muscles.
The only source of water around this hut is the snow you melt, which is why it isn’t open in the Summer season. Water purifying filters are the quickest way to refill all your containers at the hut, but you will want plenty of water for the hike in alone. Running out of water on the trail is dangerous. An added risk: when the sun went down on us after the first three hours in, the water in our CamelBak nozzles started freezing if we weren’t regularly sipping on them.
Bring a sleeping bag. Most huts I’ve been to have blankets and pillows on the mattresses, but this one does not. This is also one of the oldest and coldest cabins; built in 1882, it takes hours to heat up by wood stove, especially if no one has been in it recently.
Moose
Now forget all the advice I just gave you and center your whole packing strategy around how you plan to evade a charging moose.
This region is moose country: high, high meadows filled with willowy wetlands. They don’t care how cold it is. In the dead of night, one of us opened the front door to use the outhouse and a young bull was standing right in front. On the trail back, two different parties ran into a moose and her calf right on the trail. They are not in the way. You are on their trail.
But seriously, pack to be prepared for your comfort and sustenance on the trail and at the hut. The only thing you can do about the moose is give them a lot of space while avoiding any confrontational, jerky movements that may suggest any predatory intent. If moose perceive a threat, they are liable to charge, male or female. If they charge, drop everything weighing you down and pray-run (praying while running).
When we ran into the moose on the trail, we stayed over 50 meters away and just waited while the moose wandered further off our path. As soon as they were about 50 meters off our path, we proceeded with caution. But we waited for over 30 minutes, and would have waited longer if we needed to.
Skis vs. Skins vs. Snowshoes
This was the most highly contested logistical conversation among our party. In the end, four of us were on cross country skis (without skins), one was on skis with skins, one was on a split-board with skins, and one was on snowshoes.
This really depends on the conditions. Two weeks prior, three of us hiked the trail in boots, on well-packed snow after days of warm, dry weather. Days before we left for the trip, however, a series of storms blew several feet of snow in, which changed everything. Boots alone were definitely not an option.
Most people, who aren’t hiking to the hut, will stop and turn around at the halfway mark where historical Baker’s Tank stands. This means the trail up until that point will reliably be pretty packed down. Because of the recent snow, however, no one could be sure what conditions would be like for the second half of the trail.
Sure enough, Baker’s Tank to the hut was unbroken trail through deep, soft snow. Our lead, on snowshoes, was cursing all the way to the hut as he carved the path for the rest of us. But in deep snow, snowshoes are sometimes the most comfortable option for an ascent, especially if you are inexperienced on skis and skins.
The advantage to skinning up on a split-board or downhill skis is the width of the blades. They are wider than cross country skis, which makes balancing the extra weight more comfortable and stable.
On a packed track, cross country skis were relatively comfortable, if narrow. The boots are more similar to normal footwear, so are more flexible and comfortable than ski or snowboard boots. Price was also a determining factor: renting skis or a split-board can cost upwards of $45 per day at most rental shops. We found cross country skis for $10 per day at Wild Ernest Sports, above Silverthorne, and they worked well. One thing about cross country ski boots, however, is that they aren’t as well-insulated as downhill ski or snowboard boots. Trekking through deep snow in them requires much better waterproofing and insulation than we were prepared with.
As for skins, although the trail grade is very gradual, there is enough of a grade at times that you will be thankful for the traction that skins provide. So unless you’re on cross country blades, you’ll want some skins.
Altitude & Acclimatization
One advantage of carrying all the weight we did was that it forced us to make a slower ascent and take frequent breaks. These are two things you can do to minimize the affects of the altitude on any ascent. In our party, all but one of us have lived at an altitude over 7,000′ for at least one year. Most of us have lived over 9,000′ for several years. But this was the first hut trip over 10,000′ for three of us, one of whom flew in two days before from sea level.
Fortunately, no one in the group experienced any severe symptoms of acute mountain illness, and I credit that to our meticulous supervision of each person’s blood oxygen saturation as well as our slow ascent. The first night we were at the hut, the lowest oxygen saturation we saw was 85%, but most were between 85 and 90%, which, at over 11,000′ is not surprising. If some slow, deep breaths hadn’t brought oxygen levels up, I would have been more concerned.
As seems to be tradition on our expeditions, we arrived well after dark. But these days, sunset is at 4:30 pm. Luckily, the weather was calm, and the trail is quite obvious. Our biggest concern after dark was the tremendous drop in temperature. With no cloud cover and a recent cold front, it was well below freezing, and the only thing that kept us from freezing was the constant movement, which kept us progressing forward.
By the time we had all made it to the hut and built up a fire warm enough to kick our boots off, our socks were steaming in spite of how cold our extremities were. It took well into the night to heat up the hut, and we all spent the first night sleeping around the wood stove. Yes, it took seven hours for the last of us to make it to the front door of Section House, but the spring trip to the Benedict Huts outside of Aspen was still loads more difficult — and we didn’t even pull any sleds! The next day was windless, sunny, clear, and warmer outside than it was inside, which allowed us to get back out on our skis and snowboards to enjoy the backcountry without weight on our backs.
Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.