Category Archives: Exposure

Non-Freezing Cold Injury

Eighteen-year-old, NorAm skier, NCAA Division I Rugby player, and lover of the outdoors, presents to the clinic complaining of cold, painful hands. She states hands always feel cold, and in cold weather they are extremely painful. Blood tests to rule out vascular disease were normal. What could be the cause of this?

Normally, in cold weather our bodies work to keep essential organs functioning. Skin is not considered essential. When exposed to cold, blood vessels constrict, decreasing blood flow to the skin. Because the metabolic demand of our skin is low, more important organs like our heart and brain need the blood flow. Paradoxically, exposure to cooler temperatures like those below 15 degrees Celsius or 59 degrees Fahrenheit can cause cold-induced vasodilation. This allows blood to flow to the skin to help prevent more serious injury or frostbite. The vasodilation cycles in 5- to 10-minute intervals.

Nonfreezing cold injury (NFCI) occurs when tissues are damaged due to prolonged cooling exposure, but not freezing temperatures. NFCI is due to exposure of the extremities to temperatures around 0 to 15°C or 32 to 59°F, commonly the hands and feet. Current theory is that NFCI is due to a combination of vascular and neural dysfunction. With prolonged vasoconstriction, the skin experiences reduced blood flow with a neurological component influencing the damage as well.

Some patients living in cold environments like the Inuit, Sami people, and Nordic fisherman have a larger cold-induced vasodilation response and more rapid cycling. This is thought to decrease their risk of NFCI. Is it possible that patients who develop NFCI have a smaller and slower cycling of their cold-induced vasodilation? Could this be the issue with our patient with NFCI?  Further research is needed to learn more about NFCI and find better ways to treat it.

What we do know is there are 4 Stages of NFCI:

Stage 1: During the cold exposure – Loss of sensation, numbness, clumsiness. Usually painless unless rewarming is attempted.

Stage 2: Following cold exposure – occurs during and after rewarming. Skin can develop a mottled pale blue-like color, area continues to feel cold and numb, possible swelling. Usually lasts a few hours to several days.

Stage 3: Hyperemia – affected area becomes red and painful. Begins suddenly and lasts for several days to weeks.

Stage 4: Following hyperemia – affected areas appear normal but are hypersensitive to the cold. Areas may remain cold even after short exposure to the cold. This stage can last for weeks to years.

Mountains covered in pine forests reach up past tree line toward a deep blue sky spotted with fluffy white cumulous clouds over two people in bikinis standing on paddle boards reflected with the clouds in the dark water below them.

Outdoor paddle sports like kayaking and canoeing put patients at greatest risk due to the continual exposure to the cold, wet environment. It was thought that in order to have NFCI, one had to be exposed to both cold and wet environments. However, it has been shown that this is not always the case. Like in our patient, exposure to just cold environment can trigger the syndrome. Our 18-year-old patient is an avid skier and spends most of the winter on the mountain. It was also noted that she enjoys paddleboarding and kayaking, which were recognized as triggers for the hand pain. We are unable to determine exactly what caused our patient to develop this syndrome. But we do know it affects their life significantly.

 We choose to live in the mountains because of the things we love. Whether it is hiking, biking, skiing, kayaking, paddleboarding, or the hundreds of other activities offered in this area, we are at risk of NFCI. Currently, there is no good treatment for this syndrome. Prevention is  best. The purpose of this blog is to share information about staying healthy at high altitude. Sharing this information on the stages of NFCI with friends and family will help prevent this painful, debilitating syndrome.

Resources

Nonfreezing cold water (trench foot) and warm water immersion injuries. UpToDate. https://www.uptodate.com/contents/nonfreezing-cold-water-trench-foot-and-warm-water-immersion-injuries/print#:~:text=Nonfreezing%20cold%20injury%20%E2%80%94%20NFCI%20is,to%2059%C2%B0F)%20conditions. Accessed July 14, 2022.

Oakley B, Brown HL, Johnson N, Bainbridge C. Nonfreezing cold injury and cold intolerance in Paddlesport. Wilderness & Environmental Medicine. 2022;33(2):187-196. doi:10.1016/j.wem.2022.03.003

Rachel Cole is a Physician Assistant Student at Red Rocks Community College in Denver, Colorado. She originally grew up in Salt Lake City, Utah, where she learned to love the outdoors. She studied Biology at Western Colorado University in Gunnison, Colorado prior to PA school. She played soccer for the college and fell in love with Colorado and small mountain towns. When she is not studying for school, she enjoys skiing, hiking, backpacking, fishing, waterskiing, canyoneering, and any other activities that get her outside. After graduation she hopes to practice family medicine in a rural community in the mountains.

Kids Living at Altitude are Built Different: How Phenotypic Variations in Pediatric Patients Born at Altitude Help Them Compensate for Their Hypoxic Environment

One of the phenomena I experienced while caring for pediatric patients in Summit County was the image of a [1] child with an oxygen saturation of 83% who wasn’t in any respiratory distress. This got me thinking: do adaptations in children exposed to chronic hypoxia at altitude prepare them to encounter an episode of acute hypoxia?

It turns out this phenomenon has been studied previously. Children permanently residing at high altitudes exhibit phenotypic variations to help them adapt to their chronically hypoxic environment. According to de Meer, K., et al., for those children living at altitudes greater than 3000m above sea level since gametogenesis, the opportunities for phenotypic plasticity are particularly excellent.

These changes in phenotypic expression have led to both theorized and proven physiologic differences in oxygen uptake, transport, systemic circulation, and consumption, allowing them to overcome the effects of chronic high-altitude hypoxia.

The lower partial pressure of oxygen causes high-altitude hypoxia to those who are visiting from lower altitudes. With less oxygen in the air, increased respiratory effort would be required to maintain the same oxygen levels as those children living at sea level. However, children living at altitude have physiologic increases in ventilation, lung compliance, and pulmonary diffusion, which help negate the need for augmented respiratory effort.

To conserve respiratory rate, increases in lung compliance and tidal volume have been observed in children living at altitude. In one study by Mortola, J. P., et al., lung compliance and tidal volume remained increased even while participants were on 100% supplemental oxygen.      This suggests that this is a permanent physiological adaptation in kids living at altitude.2

Additionally, children living at altitude are more efficient at delivering oxygen to their tissues. An increase in pulmonary diffusion capacity facilitates this improved efficiency. Pulmonary diffusion capacity is determined by the surface area available for diffusion. Assuming all other anatomic variables are the same in highlanders and lowlanders[2] , this increased capacity can only be explained by an increase in the number and size of alveoli.1 To study this possibility, researchers compared the lung volumes and chest dimensions of children exposed to chronic hypoxia at altitude since birth to those of children living at sea level and found that lung volumes and chest dimensions of children residing at altitude indeed were greater.

Despite this opportunity for increased oxygen uptake by the lungs of children living at altitude, the partial pressure of oxygen in their blood is still substantially lower. This decrease in arterial blood oxygen concentration that is associated with hypoxia encourages the kidneys to release erythropoietin, which subsequently stimulates the production of erythrocytes contributing to an increased erythrocyte and hemoglobin concentration in children living at altitude. Elevated hemoglobin concentration leads to a relative increase in arterial oxygen saturation, which compensates for the lower availability of oxygen at altitude.1

Despite the witnessed phenomenon of the ability of children living at altitude to adapt to acute hypoxia, it is still debated whether chronic hypoxemia in this population results in decreased oxygen consumption. New research has concluded that previously observed decreases in oxygen metabolism in newborns at altitude are reactions to acute stress and hypoxia and should not be considered an effect of chronic exposure to hypoxia.1 In other words, the ability of children living at altitude to decrease ventilation during an episode of acute hypoxia is due to a decrease in tissue metabolism only during that event of respiratory stress.

Like most things in life, these advantages do not come without consequences. Humans exposed to chronic hypoxia are prone to pulmonary hypertension; in fact, phenotypic, physiological changes in tidal volume and lung diffusion that improve oxygen uptake contribute to pulmonary hypertension. However, unlike children who develop pulmonary hypertension unrelated to altitude, highland children often present with a less severe clinical picture and fewer irreversible complications.1

Children born and residing at altitude offer a window into a world of medical phenomena that are little understood. The more we know about the physiological differences in this population, the better we can serve them as clinicians.

References

  1. de Meer, K., et al. “Physical Adaptation of Children to Life at High Altitude.” European Journal of Pediatrics, vol. 154, no. 4, Apr. 1995, pp. 263–72. Springer Link, https://doi.org/10.1007/BF01957359.
  2. Mortola, J. P., et al. “Compliance of the Respiratory System in Infants Born at High Altitude.” The American Review of Respiratory Disease, vol. 142, no. 1, July 1990, pp. 43–48. PubMed, https://doi.org/10.1164/ajrccm/142.1.43.

Lauren Thompson is a second-year Physician Assistant Student at Drexel University in Philadelphia. She is here all the way from sunny sea level, Florida, where she got her degree in Psychology with a minor in Biology from Florida State University. She is currently completing her clinical rotation, which has taken her all over the country with her feline and canine companions, Duke and Remi. Before PA school, Lauren worked as a Certified Nursing Assistant at a local hospital and a Medical Assistant at a pediatric specialty clinic. Outside of medicine, Lauren enjoys traveling, spending time with her animals, singing karaoke, playing disc golf, and taking in all of what mother nature has to offer, whether it’s hiking, skiing, diving, or enjoying the beach.

After 21 Years of Hiking at Altitude I Had to Call Rescue

Another Lesson on High Altitude Health and Safety

Wild animals, storms, avalanches, cold, high altitude pulmonary edema or cerebral edema, falls, fires and injuries are the most common dangers in the mountains. I’ve climbed 19 different mountains in Colorado over 14,000′, and some of them more than once, making for 28 successful ascents. But I called Summit County Search and Rescue Saturday for something I was not expecting: deep wet snow that trapped me less than 2 miles from the trailhead.

A colorful map of lines in red, green and white depicting trails through various mountain terrain.
Summit County trail map

It was a bright, warm day — I had even left my hand warmers at home. My plan was to hike from Miners Creek trailhead in Frisco to Gold Hill Trailhead north of Breckenridge which is about a 6- or 7-mile trip one way. I had hiked from both ends in previous weeks and saw the turn-off had snow and no tracks. I attached my snowshoes to my backpack with plans to turn up towards Gold Hill if there were tracks, and there were.

After 4 miles I was out of the forest on top with gorgeous 360˚ views of mountains. I no longer saw the trail markers or tracks so set out across the open space with my snowshoes sinking into the snow every 10 to 20 feet. The trail maps and GPS on my phone were sketchy, only showing I was very near the Colorado Trail. I turned down a logging road to get out of the wind thinking the snow would be packed. I could see several open areas that I thought would take me to the familiar trails to Gold Hill.

After an hour sinking into deep snow I noticed I had only one snowshoe. I backtracked 100 feet following the tracks to find it, dug at several spots where I had sunk the deepest but never found it. I went back towards the Colorado Trail but could not progress, having to dig my boot out of deep snow several times.  I tried to backtrack in my footsteps but couldn’t get far. I had now covered a mile in an hour and a half, my phone showing I was only 48 minutes from the Gold Hill trailhead.

So I called 911, thinking they could drive a snowmobile up to get me.  Bad news: the vehicle would just sink the same way I was. The 911 operator knew me and the Summit County Search & Rescue mission coordinator Mark Svenson was in touch several times as I waited from 3:17 until about 6 pm when the crew arrived with skis and extra snowshoes. My Blue Heeler Isa and I stayed within one foot of a small pine tree where we found firm footing after rolling through the deep, soft snow. Luckily the sun kept us warm until 5 pm, and I had food and water. My gloves and boots were soaked so my feet were very cold and I tried to keep Isa lying over my legs or feet.  I had a plastic rain shield extension that I could pull out and sit on in a pocket of the backpack that one of my students had gifted me.

The rescuers had water, snacks, dry socks, dry gloves, gators and snowshoes. They had packed down the trail but there were still times we post-holed on the way down. We arrived at the rescue vehicle as darkness fell. Special Operations Sheriff SJ Hamit waited with Mark and other SCSR staff to welcome us. One of the rescuers told me how happy he was that I was still smiling when they arrived!

Summit County Search & Rescue team, Sheriff Hamit on the left, Dr. Chris far right.

What did I learn? Stay out of deep, wet snow even if it means going back the long way. Bring extra socks and gloves. Buy gators.

I was not afraid because I knew they were coming before dark. I do feel exhilarated that I was able to do such a challenging hike without any pain or blisters, that my knees were strong enough to extract my feet from the deep snow so many times, and that Isa was with me to warn if any animals were near and announce when the rescuers arrived.

Christine Ebert-Santos, MD, MPS is the founding physician and president of Ebert Family Clinic in Frisco, Colorado, where she leads high altitude research in addition to running a full-time family practice. Isa is a two-year-old blue heeler and Dr. Chris’s familiar and guardian angel.

A Hike a Day May Keep the Cardiologist Away

Cardiovascular disease is one of the leading causes of death worldwide, with approximately 17.9 million people succumbing to the disease annually (World Health Organization, 2021). In the United States, there is an estimated 18.2 million Americans (20 years and older) with coronary artery disease. Of those, an estimated 655,000 Americans die annually from heart disease. Approximately 805,000 experience myocardial infarction (i.e., heart attack); 605,000 of these are first time heart attacks, and the other 200,000 have experienced at least one in their lifetime (Centers for Disease Control, 2020). Prevention and management of myocardial infarctions is constantly evolving, and new innovations are being developed to minimize the long-term, chronic consequences one may deal with. Interestingly, it is possible that life at higher altitudes, such as in the Rocky Mountains, may provide a natural edge over life at sea level. For example, Summit County, Colorado (avg elevation ~11,113 ft) has a life expectancy of 86.83 years (Stebbins, 2019). On the contrary, Lauderdale County, Mississippi (elevation 668 ft) has a life expectancy of 75.2 years (U.S.News, 2021). When looking at data regarding heart attack deaths, Summit County experiences 7.2 per 100,000 and Lauderdale County has 334.1 per 100,000 (Centers for Disease Control, 2017-2019).

Myocardial infarction is defined by cardiac muscle death that results from prolonged ischemia. The ischemia is typically the result of an atherosclerotic plaque that ruptures and occludes an artery supplying an area of heart muscle. This leads to an imbalance between the oxygen supply and demand in the affected tissue. Additional swelling ensues, occluding microcirculation, which results in more regional ischemia (Montecucco, Carbone, & Schindler, 2016). In addition to the lack of oxygen, cardiac cells overload with calcium, which causes excess contraction, cytoskeleton digestion, excess reactive oxygen species (ROS) formation, DNA fragmentation, and the release of cytochrome C from mitochondria, which signals cellular death (Heusch & Gersh, 2017).

How might altitude play a protective role in such a complicated process? There are many hypotheses out there, and some interesting findings have been discovered in animal models. Mentioned earlier, ROS fragment the DNA within cardiac cells, which is a trigger for cellular death. With the DNA damaged, cellular function ceases. ROS exposure is a normal part of life; they result from the oxygen we breath, which form free radicals (lone oxygen atoms), the pollution in the air, and the alcohol one may consume. Surprisingly, there is a reduction of ROS formation when someone is at a high enough altitude. This leads to the cardiac cell’s ability to form new, healthy cells. This suggests that ROS are like the breaks to a car and reduces the cell’s ability to move forward in the process of cell division. By taking the breaks off, it may be possible to regenerate healthy, functional tissue (Nakada, et al., 2017).

Another issue of myocardial infarction is the process of remodeling and scar tissue formation. Depending on the extent of the damage, remodeling can be detrimental and compromise the heart’s ability to pump blood efficiently. The inflammation that results signals neutrophils to the area to form scar tissue to try and repair the damage. Neutrophils also work to prevent adverse remodeling. The goal in managing heart attacks is to minimize any sort of damage that may result, but if we are too aggressive in this process, we can cause the formation of excess ROS. These ROS play a role in prolonging the lifespan of these neutrophils, allowing them to keep working. If we do not get timely resolution of the neutrophil remodeling, then healing may not be optimized (Montecucco, Carbone, & Schindler, 2016).

One study in rats explored how the heart remodels when exposed to intermittent hypoxia. Over the course of this study, rats were gradually exposed to higher simulated altitudes, and returned to baseline elevations for periods of time. The highest elevation they were exposed to was 8000 m, or the summit of Mt. Everest. They discovered that both right and left ventricles did remodel over the course of the experiment, but the left ventricle experienced significant remodeling only at the highest altitude. They also discovered that the functionality of the left ventricle was maintained. The remodeling was explained by reoxygenation that occurred at normal elevations, which resumed the production of ROS. This mechanism was absent at altitude. There are rare adverse effects of living at high altitude, which include stunted body growth, erythrocythemia (excess red blood cell formation), pulmonary hypertension, and myocardial fibrosis (Papoušek, Sedmera, Neckár, Oštádal, & Kolár, 2020).

It is exciting to explore some of the possible benefits of being and living in higher elevations. Going forward, it will be important to see if there are clinical applications, and if these applications can be administered safely and efficiently. Just like scuba divers being treated for the bends in hyperbaric chambers, what if we can develop a hypobaric chamber for those who experienced a recent heart attack? Is it possible to minimize damage by reducing the amount of oxygen entering the body, and how long would one have to be exposed to such treatment? These are very important questions that need further investigation. For now, the best course of action is to eat healthy, stop smoking, and go for a hike. If you happen to be hiking in Colorado, it may help keep the cardiologist away.

References

Centers for Disease Control. (2017-2019). Interactive Atlas of Heart Disease and Stroke. Retrieved from Centers for Disease Control and Prevention: https://nccd.cdc.gov/DHDSPAtlas/reports.aspx?geographyType=county&state=CO&themeId=8&filterIds=9,2,3,4,7&filterOptions=1,1,1,1,1#report

Centers for Disease Control. (2020, September 8). Heart Disease Facts. Retrieved from Centers for Disease Control and Prevention: https://www.cdc.gov/heartdisease/facts.htm

Heusch, G., & Gersh, B. J. (2017). The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. European Society of Cardiology, 774-784.

Montecucco, F., Carbone, F., & Schindler, T. H. (2016). Pathophysiology of ST-segment elevation myocardial infarction: novel mechanisms and treatments. European Society of Cardiology, 1268-1283.

Nakada, Y., Canseco, D. C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C. X., . . . Schiattarella. (2017). Hypoxia induces heart regeneration in adult mice. Nature, 222-226.

Papoušek, F., Sedmera, D., Neckár, J., Oštádal, B., & Kolár, F. (2020). Left ventricular function and remodelling in rats exposed stepwise up to extreme chronic intermittent hypoxia. Respiratory Physiology and Neurobiology.

Stebbins, S. (2019, September 6). 50 counties with high life expectancies: Does yours make the list? Retrieved from USA Today: https://www.usatoday.com/story/money/2019/09/06/the-50-counties-where-people-live-the-longest/40072465/

U.S.News. (2021). Overview of Lauderdale County, MS. Retrieved from U.S.News: https://www.usnews.com/news/healthiest-communities/mississippi/lauderdale-county

World Health Organization. (2021, June 11). Cardiovascular Diseases (CVDs). Retrieved from World Health Organization: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Tyler Cole is a second year Physician Assistant student at Midwestern University in Glendale, Arizona. He was born and raised in Glendale, and went to The University of Arizona in Tucson, where he earned his bachelor’s in Physiology and Biochemistry in 2013. From there, he went on to serve the city of Tucson as an Emergency Medical Technician for six years. He was also an EMT instructor at Pima Community College for three years. Outside of medicine, Tyler enjoys watching hockey, fishing, traveling, and spending time with his dog, Louie.

Nail Abnormalities at High Altitude

With summer just around the corner, more people will be hitting the mountains for some high altitude hikes and 14ers. There have been numerous anecdotal findings of mountaineers with changes to their fingernails after ascending the world’s tallest peaks, with the most common abnormalities being Mees’ lines, Muehrcke’s lines, and Beau’s lines. While the peaks in Colorado do not compare to those of the Himalayas, there is always a chance, albeit very low, that you may notice some changes to your nails after a high altitude expedition.

Both Mees’ lines and Muehrcke’s lines are types of leukonychia, which means “white nails”. Mees’ lines present as a single horizontal white band, sometimes multiple, located in the nail plate and are non-blanching. Throughout history, Mees’ lines have been associated with drug toxicity, such as from arsenic or thallium.4 Additionally, there are many systemic diseases that have been associated with Mees’ lines in which the body is experiencing high amounts of stress, such as with myocardial infarction, sickle cell crisis, and tuberculosis.4

Mee’s lines

One case report, “Mees’ lines in high altitude mountaineering”,  by Avinash Aujayeb details how a 27-year old man developed Mees’ lines after he traversed high altitudes in the Pakistani Karakorum range, attempting to scale a summit of 7031 meters.1 He acclimated to altitude at a camp located at 4000 meters,  and stayed for a total of 21 days. No medications were used for acclimatization. In his attempt to reach the summit, he became extremely fatigued and hypothermic, and turned around at 6900 meters. Upon return to sea level, he lost about 17 pounds of weight. Six weeks after his expedition, he developed non-blanching horizontal white lines on his nails, consistent with Mees’ lines. The lines eventually moved distally and completely disappeared. While the paper does not go on to hypothesize the cause of this man’s development of Mees’ lines, it seems reasonable that they appeared due to the stress the man endured as evidenced by his need to turn around early from fatigue and hypothermia, and likely hypoxia given the extreme altitude.

Muehrcke’s lines present as a pair of horizontal white bands located in the nailbed, the skin beneath the nail plate, making them blanchable (unlike Mee’s lines which are located within the nail itself). Muehrcke’s lines usually present on the 2nd, 3rd and 4th fingers, and typically spare the thumb. Historically, these lines are most associated with hypoalbuminemia as seen in a protein-losing condition of the kidney called nephrotic syndrome.4 They have also been found in disease states of systemic immunosuppression, such as in HIV, where the metabolism of the body is stressed and has decreased ability to make proteins. 4

Muehrcke’s lines

The discovery of Muehrcke’s lines was first published in the British Medical Journal in 1956 by Robert C. Muehrcke.4  In the paper, he details a study in which he compared 750 adult patients and healthy volunteers who had normal serum albumin against 65 patients known to have chronic hypoalbuminemia.  He saw that the pair of white horizontal lines were only in those with the chronic hypoalbuminemia, most specifically those with a serum albumin below 2.2 g/dL.4 Once these patients were treated and their albumin concentrations increased, the lines disappeared after a few weeks. He thought the findings suggested that Muehrcke’s lines were from an albumin deficiency due to poor nutrition.

In a letter to the editor of High Altitude Medicine and Biology, authors Windsor, Hart, and Rodway describe the presence of Muehrcke’s lines on Mount Everest after a 38 year old with no significant medical history noticed their appearance a few weeks after he had returned to sea level.3 There were two parallel horizontal lines under the nails of his 2nd, 3rd, 4th, and 5th digits, sparing the overlying nail. They believe the development of these nail findings were indeed from hypoalbuminemia , however do not believe it was from a nutritional deficiency as Muehrcke first described, because the climber had been healthy throughout his expedition and he maintained good nutrition.3 They attribute the findings to peripheral edema, which is a common finding in high altitude mountaineers. With this edema, fluid levels in the tissues increase. The authors believe this may have inhibited the growth of the nailbed, which then resumed with return to sea level.

Another nail finding from high altitude mountaineering is called Beau’s lines, which are an indented groove across the span of the nail horizontally, beginning at the base of the lunula. The lines result when nail formation is temporarily halted during episodes of stress, and usually present several weeks after the stressful incident.2 They are generally caused by local trauma to the nail, extreme temperatures, and toxicity from chemotherapy.4

Beau’s lines

There was a prospective study completed by authors Bellis and Nickol in High Altitude Medicine and Biology where the study participants were completing a research expedition in eastern Nepal in April and May of 2003.2 The maximum altitude reached varied from 5,142 to 6,476 meters and the length of stay of each individual also varied. The study found Beau’s lines developed in 1 out of 56 participants at 4 weeks, however by 8 weeks, 17 out of the 52 (or 33%) developed Beau’s lines. The authors hypothesized that the changes were possibly due to the hypoxic as well as hypobaric environment which could diminish the activity of the nail matrix. However, they did acknowledge the fact that there were other factors that could have resulted in the Beau’s lines, such as extreme cold conditions and possible injuries to the fingers due to the nature of the work of the researchers. No participants reported frostbite or any damage to the hand, however at night temperatures dropped as low as negative 20 degrees Celsius.

Clubbed fingers

These nail abnormaltities are less likely to be found during expeditions within the United States unless hiking in Alaska, which has Denali, the tallest peak in the US at 20,310 meters. Outside of Alaska, the tallest peak is Mount Whitney in California, which pales in comparison at 14,505 meters. Most of the case reports completed on these nail findings were from several week-long expeditions in the Himalayas. However, condition you may already be aware of is clubbing of the fingers. This presents as a bulbous enlargement of the fingertips caused by chronic hypoxia. During my five-week visit here, I have anecdotally heard from two different Summit County residents that they have many healthy and young friends with clubbed fingers. Unfortunately, I was unable to find any research on the prevalence of clubbed fingers among individuals living at high elevations, but I believe it is something that deserves to be looked into deeper. 

References

  1. Aujayeb, A. (2019). Mees’ lines in high altitude mountaineering. BMJ Case Reports, 12(3), 1. doi:10.1136/bcr-2019-229644
  • Bellis, F., & Nickol, A. (2005). Everest Nails: A prospective study on the incidence OF Beau’s lines after time spent at high altitude. High Altitude Medicine & Biology, 6(2), 178-180. doi:10.1089/ham.2005.6.178
  • Windsor, J. S., Hart, N., & Rodway, G. W. (2009). Muehrcke’s lines on Mt. Everest. High Altitude Medicine & Biology,10(1), 87-88. doi:10.1089/ham.2008.1079
  • Zaiac, M. N., & Walker, A. (2013). Nail abnormalities associated with systemic pathologies. Clinics in Dermatology,31(5), 627-649. doi:10.1016/j.clindermatol.2013.06.018

Makenna Schmidgall is a second-year physician assistant student at the Midwestern University Physician Assistant Program in Glendale, Arizona. She grew up in Gilbert, AZ, but left her desert home to attend New York University in the Big Apple where she earned a bachelor’s degree in Global Public Health/Biology. During her junior year of college, she began working as an ER scribe in multiple emergency departments of the Mount Sinai Health System in New York, NY. She enjoys gardening, hiking and playing with her new Labrador retriever puppy “Piper”.  

Doc Talk: ALTITUDE AND THE EYES, AN INTERVIEW WITH DR. PAUL COOK, OD

Have you ever wondered why a bag of chips will swell almost to the point of bursting when you travel from a lower elevation?  As the altitude increases  the barometric pressure decreases. The difference between the high pressure inside the bag and the low pressure outside causes the bag to swell (and sometimes burst) to reach equilibrium with the surrounding environment.

The same concept applies to our biological tissue, including our eyes. Luckily there is not normally gas in our eyes, but there are procedures where air bubbles are injected into the eye, such as a vitrectomy: part of the vitreous humor of the eye is replaced with air so that a nearby site has the chance to heal. Common indications include a retinal detachment, macular hole or removal of scar tissue. It’s important to remain at the elevation your ophthalmologist or optometrist indicates because you don’t want your eye to suffer the same fate as a bag of chips!

This was one of many interesting things I learned while speaking with D. Paul Cook, OD and his wife and practice manager Karen Cook at Summit Eye Center on Main Street in beautiful Frisco, CO. The following is my interview with Dr. Cook, Karen Cook, and my preceptor Christine Ebert-Santos, MD, MPS.

How many years have you been practicing optometry in Frisco, CO?

I don’t recall the exact year, but I remember it was the year the Broncos lost the Superbowl.

Dr. Paul Cook at the entrance of Summit Eye Center.

I did a little research and this must have been either the 1986 or 1987 season, as the Broncos lost both of those Superbowls. Fortunately, those Superbowl losses were not a bad omen as Dr. Cook has successfully served the Frisco area every year since.

What conditions do you see commonly here at altitude?

One thing I see commonly here is recurrent corneal abrasions. The classic patient lives at a lower altitude and previously had a corneal abrasion. They received treatment but the abrasion site never completely heals. After arrival in the high country where it’s extremely dry that abrasion site dries up and becomes inflamed.

Usually what I do is give a bandage contact lens to cover up that recurrent corneal abrasion, which usually works, but if it’s extremely painful, we can use amniotic membrane, which is expensive. But it is effective.

The cornea is the outermost layer of the eye (if you don’t count the tear film). A corneal abrasion occurs when any foreign object scrapes the corneal surface. Symptoms include a foreign body sensation, pain, clear discharge, blurry vision and sensitivity to light. A corneal abrasion needs a healthy, moist environment in order to heal. You can see how the dryness that comes along with altitude could lead to a recurrent corneal abrasion.

I also see a fair amount of snow blindness, usually in the spring though.

I suppose it has to do with the sun being higher in the sky and people being out and about hiking. When people are out skiing in the cold winter they wear their goggles, but if it’s spring time and somebody’s hiking they might forget their glasses.

Snow blindness is only one potential cause of a disease called photokeratitis. Other causes are staring at the sun, looking at an arc welder, or catching too many refracted UV rays from surfaces such as sun, water, ice and snow. The pathophysiology for each disease is the same: too many UV rays are focused onto the cornea at one time which causes damage. Symptoms include pain, redness, blurriness, sensitivity to bright light, headache, and occasionally temporary vision loss. Treatment for photokeratitis caused by snow blindness is supportive, but the most important thing is resting your eyes. Try to get into a dark room and avoid anything that makes your eyes uncomfortable. In a few days your cornea should heal.

Prevention  is straightforward: wear sunglasses or ski goggles with adequate sun protection.

Are cataracts a more common condition at altitude?

Oh yes, because of sun exposure and our aging population here. The people of Summit County are so active, which increases their exposure to the damaging rays of the sun. We’re also treating cataracts so much sooner than we used to, so that’s part of what makes it more common.

Do you have any recommendations for healthy aging at altitude as it relates to the eyes?

Karen: Getting your annual eye exam. We always tell patients there are a lot of things we can do to preserve your vision, there’s almost nothing we can do to give it back to you.

So if you live in Frisco, CO and don’t have an optometrist, make sure to see Dr. Paul Cook!

Is blurry vision a common malady in patients that have recently received a LASIK procedure and then ascended to higher elevations?

I have not seen that with LASIK. About 30 years ago though there was a procedure called Radial Keratotomy (RK) that involved a surgeon making radial cuts on the cornea in order to correct nearsightedness. Those patients used to require one pair of glasses for where they lived at lower elevation and one pair of glasses at higher elevation. It’s not a procedure commonly done nowadays but patients that had RK roughly 30 years ago may have that problem.

LASIK stands for Laser Assisted In Situ Keratomileusis. It essentially means that the surgeon will use a laser to reshape the cornea so that the light refracting through it will be appropriately concentrated on the retina. LASIK is faster, cheaper, safer and more effective than RK. It has largely usurped RK for surgical treatment of nearsightedness or farsightedness.

What are some interesting cases you have seen over your years of practice?

I treated a patient that traveled from the Midwest and had a genetic condition called retinitis pigmentosa. Clinically that means the patient had limited peripheral vision at baseline.  He and his wife decided to hike the Colorado Trail. Unfortunately during the hike he developed blurred vision and ended up coming into my office. Turns out he had macular edema and I referred him to an ophthalmologist down in Denver because the altitude was probably the cause of his macular swelling. I called him a few weeks later and his vision had returned to normal.

Another  patient came into the office because his wife had noticed growths on his iris that turned out to be nevi (colloquially known as moles when they’re on the skin). So I dilated his eyes and noticed growths on his retina. I referred him down to oncology in Denver for a biopsy and it turned out to be melanoma. I think they’re closely monitoring that melanoma at this point. It’s uncommon to see cancers of the eye but I see them once every few years.

Dr. Cook performing an eye exam on me.

For my last question, do you have any general recommendations for residents or visitors?

Wear sunglasses, eat your vegetables, eat your fish at least two times per week, keep your cholesterol in check, keep your sugars in check, take breaks from looking at the computer, don’t sleep in your contacts, and see your optometrist once per year.

Seth Selby is a second-year physician assistant student at Des Moines University. He was raised in Eaton, CO and attended Colorado State University with a bachelor’s degree in Health and Exercise Science. Prior to PA school, Seth worked for 3 years as a Cardiovascular Technician at Boulder Community Hospital. In his spare time Seth loves backpacking, hunting, fishing, skiing and astronomy.

Paraguay Takes On Colorado’s Fourteeners

After a horrendous Autumn of forest fires in Colorado, we’ve received well over a foot of snow in a series of storms, and it’s safe to say Winter has arrived. Hiking season is never truly over in the Rockies, but Colorado’s famed Fourteeners are now blanketed in snow, increasing the risk of any attempted ascent exponentially. But through the fire and ice, the Summer yielded ample opportunity for at least one enthusiast to check off more of her bucket list adventures.

Since leaving her home in Paraguay, mountaineer and hiking expert Clarissa Acevedo Santos has spent over a decade ascending Colorado and Hawai’i’s highest peaks. In addition to her excursions in the Ko’olau and Kahalawai ranges including Maui’s Haleakalā crater, she has summited well over half the 58 peaks in Colorado over 14,000 feet, making her the first from her country of record to do so.

She was invited on her first Fourteener years ago when friends took her up Quandary outside of Breckenridge, CO, at 14,271′ (4350 m).

“When I hiked that first mountain, it was hard, because I wasn’t used to gaining that much elevation. I didn’t really enjoy it so much because of how cold it was on the summit. Even though I made it to the top, I wasn’t really having fun with not feeling my lips and not feeling my fingers because it was really, really cold. I could barely smile, and we couldn’t even enjoy the summit because of how windy it was!

“After that hike, I didn’t hike for a while, and I got invited again to climb Mt. Elbert in 2012. It was actually much more enjoyable because it was with a big group of college kids from Summit and the weather was just perfect. We were able to summit it and enjoy the day and have lunch up there. So that’s what started to change my mind about hiking Fourteeners because I enjoyed my time up top. That’s when I realized it’s not always difficult to be up there. I think I got what all the hikers call ‘Peak Fever’. So after that is when I feel like I started going non-stop, and I met more friends that were into hiking, and researched more about the mountain before I go.

“I always go with people who knew more about it, so I started learning more with other friends and other hikers. And I started feeling actually great when I got higher. It was always harder to get started close to the beginning [of the trail], just to gain all that elevation. But then when I was getting close to the summit, I just got more energy. I just got more excited to be at the top. That’s the goal. It’s a great feeling.”

Clarissa has an app that she uses to record all her summits called Colorado 14ers that allows her to keep record of and upload photos from every Fourteener she’s hiked. She pulls it up as she recounts year after year of more and more summits, some she’s even done more than once.

There is a class system rating every trail by level of difficulty, Class 1 being the easiest and Class 4 being the most difficult. The most difficult peak Clarissa recounts climbing is Long’s Peak, as well as the most dangerous weather she’s climbed in.

“It was a little bit late to summit it. It was not a good idea. If the rocks got wet, it could be very dangerous. There were people turning around. We decided to wait on a ridge. There were three [of us], and one turned around. He wasn’t feeling good, he was getting tired, he wasn’t used to hiking that many hours.

“We decided to wait for the clouds to go away. After that we just kept going. It did not rain on us, thankfully.”

Clarissa has seen her share of altitude sickness as well. One of her frequent hiking companions repeatedly gets stomachaches and headaches everytime they hike, in spite of being an experienced hiker as well.

“I always ask [one of my friends in particular] if she wants to stop or if she wants something. She normally doesn’t eat before she starts a hike. No breakfast. But I also carry ginger candy … I learned that from other hikers telling me it can help settle your stomach a little bit. It’s everywhere, in all the stores. Now they’ve created gums. I’ve started chewing them on my hikes just in case. You never know. I’ve seen people who hike all the time, and they ate something that didn’t digest well, and they feel sick and get a little dizzy.

“I’ve never experienced any headaches on the way up. The only time I remember having a headache is when I ran out of water. I hiked Oxford and Belford in the Saguache range in the same day. My head hurt and it lasted for that night. Now I take a filter with me so I can fill my [Camelbak] bladder. And I also take electrolytes. And I’ve started hiking with poles more as well, just because you put alot of weight on your knees when you’re hiking down. It’s very smart to start using poles.”

When it comes to preparing such demanding ascents, Clarissa recommends spending some time at an intermediate altitude before hitting the trail, and staying well-hydrated. Caffeine and alcohol the night before doesn’t typically help.

Clarissa with her husband on their way up Mt. Shavano in September 2019.

“It doesn’t matter how fit you are … you can still get really sick. I’ve heard of people who get headaches for several days because [they’re] not used to [the elevation here].”

She also says it’s important that you start any hiking at all to build the strength in your lungs.

“It does hurt,” she says about the stress on your respiratory system. “I remember when I was hiking Quandary, my chest was so pressed, my heart was [beating] so fast, my stomach was feeling weird, like I had to pee or I had to do number two or something. It was such a difficult part of … gaining all that elevation.”

“You’ve gotta find a good pace for yourself. I see many of my friends going really fast ahead of me, then they’re very tired and they have a hard time getting to the top. I’ve waited for many people because they are struggling so much at the end. Take as many breaks as you think [you need]. Carry enough water!

Clarissa keeps seeing a lot of hikers running out of water. “They just bring a tiny plastic bottle. That’s a huge mistake. And bring food, too. You will get hungry after a mountain. It’s so funny how many people are unprepared. If I’m hiking with newbies, I make sure they have everything, and they’re always thankful.”

When it comes to clothes and shoes, Clarissa recommends really good traction. She’s tried some more affordable brands, but says the durability is worth paying more for.

Don’t ever hike in new hiking shoes before you’ve broken them in. Good hiking socks also have more padding at the heels and toes and help prevent blisters. She also will double-up on socks, or even bring an extra pair to help mitigate possible cold.

“I reapply sunscreen on my hikes two to three times. Many times my nose will burn. I always carry sunglasses. You’re so close to the sun, you don’t realize. You don’t want to burn your eyes or your face. Even with the sunglasses, having a hat on top of it doesn’t hurt. Even in the Summer in the mountains, carry additional gloves or layers, because you don’t know what the weather could be. Temperature changes quick.

“I just recently purchased a nice puffy Northface that helped me. I will always have a thin layer underneath because you get hot and cold. You’re gaining elevation, you get hot, then you get cold in the middle …”

When it comes to navigation, Clarissa’s main resource is 14ers.com, which allows you to download offline maps, so you aren’t relying completely on having cell service.

“Even though I have hiked many of them, I want to be sure I’m going the right direction … I just love reading everything I can beforehand. I read about the class, how much exposure, how long it’s going to take, then I download the maps, look at the maps, what kind of road it’s going to be, if my car can make it up higher or if I have to hike longer.”

Clarissa has heard of other Paraguayans hiking around the world, but has never met another one on a Fourteener personally. But she does meet a lot of people from around the world on these ascents who ask if there are mountains in Paraguay. The highest is Cerro Peró at 2762′ (842 m) in this landlocked country known more for its rivers and the hydroelectricity they provide for Paraguay and its neighboring countries, including Brazil and Argentina.

Clarissa says she’s learning more and more each year about mountaineering and advocates learning as much as possible about each ascent before you go. The weather may be different every single time.

Bring the layers, whether you think you’ll need them or not. And leave no trace.

Thank you, Clarissa, for sharing your continuing legacy, and be safe up there!

robert-ebert-santos
Powder ‘stache.

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery. Clarissa is his wife who is increasingly a much faster, more experienced mountaineer than he is, but he will occasionally feel ambitious enough to join her on a Fourteener, at the top of which they both enjoy a delicious cider, weather permitting.

Acetazolamide

Typical symptoms of acute mountain sickness (AMS) are headache, loss of appetite, disturbed sleep, nausea, vomiting, fatigue, and dizziness. However, more serious conditions such as high altitude pulmonary edema (HAPE) or cerebral edema (HACE) can present with this illness. Avoiding these unpleasant symptoms while at elevatione is possible through gradual pre-acclimatization when possible (what science recommends!), or there are specific medications that can potentially prevent the development of AMS, such as acetazolamide. This article will address how acetazolamide (also known as Diamox) can help prevent AMS, discuss the physiological effects of the medication, some side effects, and whether or not this drug can enhance physical performance.

 How does it work?

Acetazolamide is a carbonic anhydrase inhibitor. Carbonic anhydrase regulates kidney absorption of sodium bicarb and chloride. Acetazolamide works by inhibiting carbonic anhydrase, preventing the reabsorption of sodium bicarb and chloride, causing acidosis in the blood. When experiencing AMS, the body is in a state of respiratory alkalosis. By taking acetazolamide, which causes metabolic acidosis it drives receptors in the body to increase the patient’s minute ventilation by as much as 50%, improving arterial PO2 and increasing oxygen saturation.

How can I obtain acetazolamide and when should I start taking it?

Acetazolamide requires a doctor’s prescription, and the typical dose for the prevention of AMS is 125 mg twice daily. The typical recommendation is to start taking acetazolamide one day before your exposure to high altitude and continue usage throughout your trip. When taken one day before exposure, studies show that acetazolamide reduced AMS incidence and enhanced tolerance to submaximal exercise on the first day at high altitude versus starting administration the day of arrival.2 However, if, for some reason, the medication isn’t started a day before arrival to high altitude, then the medication should be started upon arrival, which still shows a decreased incidence in the development of AMS. 

Allergies & Side Effects

Acetazolamide belongs to a classification of drugs known as sulfonamides, which is broken down further into two categories: antibiotics and nonantibiotics. Acetazolamide is considered a nonantibiotic sulfonamide, which varies significantly from sulfonamide antibiotics because these antibiotics contain what is known as an arylamine group in their chemical structure. This arylamine group is a key component of the allergic response to sulfonamide antibiotics (sulfamethoxazole, sulfasalazine, sulfadiazine, and the anti-retrovirals amprenavir and fosamprenavir); however, this structure is not present in other sulfonamide drugs like acetazolamide.1 There is available evidence that suggests patients who are allergic to arylamine sulfonamides do not cross-react to sulfonamides that lack the arylamine group and so may safely take non-arylamine sulfonamides.1 Patients with known allergies to sulfonamide drugs should consult with their healthcare provider before taking acetazolamide.

Like all other medications, there are risks that side effects will occur with acetazolamide’s administration. The common side effects are fatigue, malaise, changes in taste, paresthesia, diarrhea, electrolyte disorders, polyuria, and tinnitus. While conducting research, I found 3 – 4 people from my hometown, located at 69 feet above sea level, who have taken acetazolamide while rapidly ascending to 8,000+ feet to ski or hunt. When asked how their experience was taking acetazolamide, the common response was that they stopped using it within the first two days due to the change in the taste of their beer! The pleasurable “fizz” in our carbonated drinks is attributed to chemical excitation of nociceptors in the oral cavity via the conversion of CO2 to the carbonic acid in a reaction catalyzed by carbonic anhydrase. So administering a carbonic anhydrase inhibitor like acetazolamide results in flat-tasting carbonated drinks, or, as described by the aforementioned subjects, a “nasty beer”!4 While a bad tasting beer is no fun, AMS is a lot less fun, and one would be best advised to continue taking acetazolamide while at high altitude.

Can taking acetazolamide increase physical performance and endurance at high altitudes?

Though enticing, it doesn’t seem to work out that way. There are multiple studies on exercise endurance in hypoxic conditions with the administration of acetazolamide, but the produced results are confounding. The majority of the studies show that for a non-acclimated person taking acetazolamide in hypoxic conditions, endurance and exhaustion time were increased with submaximal and maximal exercise. A few reasons this may be true are the induction of metabolic acidosis and its effects on muscle cells, the diuretic effect of the drug inducing dehydration, and additional increases in work of breathing cause vasoconstriction in locomotor muscles, which can impair exercise performance.3 Regardless, this medication’s proven science in the prevention of AMS should not be mistaken with the multiple confounding studies on exercise endurance.

Scott “Scotty B” Rogers, FNP-S

From Opelousas, Louisiana, Scott Rogers is currently a Family Nurse Practitioner student at Walden University after having practiced five years as an RN following his BSN from the University of Louisiana at Lafayette. He has lived in Colorado for the past four years where he enjoys hiking with his wife and dog, snowboarding all the resorts in Summit County, and basketball, and hopes to pursue more work with acute physical rehabilitation, orthopedics, and sports medicine.

References

1. American Academy of Allergy Asthma & Immunology. (2019, June 23). Acetazolamide and sulfonamide allergy: AAAAI. Retrieved November 13, 2020, from https://www.aaaai.org/ask-the-expert/acetazolamide

2. Burtscher, M., Gatterer, H., Faulhaber, M., & Burtscher, J. (2014). Acetazolamide pre-treatment before ascending to high altitudes: when to start?. International journal of clinical and experimental medicine, 7(11), 4378–4383.

3. Garske, L., Medicine, 1., Brown, M., Morrison, S., Y, B., G., B., . . . Zoll, J. (2003, March 01). Acetazolamide reduces exercise capacity and increases leg fatigue under hypoxic conditions. Retrieved November 13, 2020, from https://journals.physiology.org/doi/full/10.1152/japplphysiol.00746.2001

4. Jean-Marc Dessirier, Christopher T. Simons, Mirela Iodi Carstens, Michael O’Mahony, E. Carstens, Psychophysical and Neurobiological Evidence that the Oral Sensation Elicited by Carbonated Water is of Chemogenic Origin, Chemical Senses, Volume 25, Issue 3, June 2000, Pages 277–284, https://doi.org/10.1093/chemse/25.3.277

WMS Blog Entry No. 5: Advances in Frostbite, a Synopsis of Dr. Peter Hackett’s Lecture

Frostbite is an injury caused by freezing of the skin and underlying tissue. The main pathophysiology of frostbite is ischemia. Basically, where there is blood flow there is heat and where there is no blood flow there is no heat to that area. The vasoconstriction and loss of blood flow to the skin predispose the skin to becoming frozen. Heat transfer depends on blood flow and blood flow depends on sympathetic nerve tone. In our extremities, there are only nerves that cause vasoconstriction. Exposure to cold or a drop in the body’s core temperature can induce vasoconstriction from these sympathetic nerves in which decreases the amount of blood flow to the extremities to keep the central aspect of the body warm and central organs well-perfused to help to maintain the body’s core temperature.

Frostbite usually occurs in the apical areas of the skin also called glabrous, which is Latin for smooth because these areas have no hair. These areas include the face, palmar surface of the hand, and the plantar surface of the foot. These areas of the skin are rich in arteriovenous anastomoses, which are low-resistance connections between the small arteries and small veins that supply the peripheral blood flow in the apical regions of the skin. These anastomoses allow the blood to flow into the venous plexus of the skin without passing through capillaries, and play a major role in temperature regulation.

Causative factors of frostbite include inadequate insulation, circulatory compromise, dehydration, moisture, trauma, and immobility. All of these factors in combination can result in frostbite.

The behavioral risk factors include mental illness, alcohol/drug use, fear, apathy, and anxiety. All of these risk factors can contribute to frostbite, generally, from poor self-care.

Frostbite is said to kill twice during its two phases that occur. The first phase is the frozen phase in which ice crystals form in the intracellular compartment at about 29 degrees Fahrenheit. These ice crystals will suck the fluid out of the endothelial cells and become enlarged causing the endothelial cells to lyse from dehydration and interrupt microcirculation. The second phase is the rewarming phase in which the skin thaws and is at risk for microthrombi production and necrosis due to prolonged injury to those endothelial cells.

The usual phase at which we see frostbite in a clinical setting is after thawing, in which the skin looks flushed pink, red, with the appearance of blebs that form one hour to twenty-four hours after thawing. These blebs can rupture spontaneously in 4-10 days and shortly after, a cast-like eschar forms. Then the eschar usually sheds in 21-30 days.

Deep Frostbite

Frostbite is classified based on the depth of tissue damage, from superficial with no tissue damage being mild and deep tissue damage including muscle, bone, or tendon being classified as severe frostbite. The mildest form of frostbite is called frostnip. Frostnip is freezing of the skin but there is no actual freezing injury and doesn’t cause permanent skin damage.

Stages of Frostbite

What can you do in the field for Frostbite?

It is important to provide supportive care with IV or PO hydration to prevent dehydration. If the affected area is frozen with no imminent rescue, it is recommended to thaw the area with warm water and try to avoid refreezing. You can give NSAIDs, such as Ibuprofen, 400 mg every 8 hours, or ketorolac 30 mg IV. If the person is at altitude and their oxygen saturation is low you can provide oxygen. However, the individual must be taken to the nearest hospital for further treatment, especially in cases of severe frostbite.

New research studies have been exploring the use of thrombolytics in the treatment of frostbite. Many of the research studies have shown that IV TPA or iloprost may be of benefit to administer in a hospital setting. However, iloprost is not approved for IV use in the United States and other prostacyclins have not been studied for the use of frostbite as of yet. There are current literature and guidelines that have been published for the prevention and treatment of frostbite, however, more research is needed to further support standardized treatment of all patients with frostbite with thrombolytic therapy. Hopefully, these new studies will encourage more research into using thrombolytics and prostacyclins for frostbite.

In the meantime, it would be best to stay warm to prevent frostbite. Tips to help in frostbite prevention include:

  • Limit time you’re outdoors in cold, wet, or windy weather. Pay attention to weather forecasts and wind chill readings. In very cold, windy weather, exposed skin can develop frostbite in a matter of minutes.
  • Dress in several layers of loose, warm clothing. Air trapped between the layers of clothing acts as insulation against the cold. Wear windproof and waterproof outer garments to protect against wind, snow, and rain. Choose undergarments that wick moisture away from your skin. Change out of wet clothing — particularly gloves, hats, and socks — as soon as possible.
  • Wear a hat or headband that fully covers your ears. Heavy woolen or windproof materials make the best headwear for cold protection.
  • Wear socks and sock liners that fit well, provide insulation, and avoid moisture. You might also try hand and foot warmers. Be sure the foot warmers don’t make your boots too tight, restricting blood flow.
  • Watch for signs of frostbite. Early signs of frostbite include red or pale skin, prickling, and numbness.
  • Eat well-balanced meals and stay hydrated. Doing this even before you go out in the cold will help you stay warm.

Lauren Pincomb Apodaca is a second-year Physician Assistant student in the Red Rocks Community College Physician Assistant Program. Originally from Las Cruces, New Mexico, she graduated from New Mexico State University with a Bachelor of Science in Biochemistry and a Bachelor of Art in Chemistry. After obtaining her undergraduate degrees, she was accepted as a Ph.D. fellow in Pharmacology at the University of Minnesota where she conducted research in a biomedical laboratory doing cancer research. She then realized that she wanted to make a difference in people’s lives through hands-on experience rather than working in a laboratory. She went back to New Mexico and received her certification as a nursing assistant and started from the ground up to reach her ultimate goal of being a Physician Assistant. She has enjoyed living in Colorado and the many outdoor activities that Colorado has to offer. Her favorite are kayaking, fishing, and hiking. She is looking forward to graduating soon.

References:

Hill, C. (2017, December 22). Cutaneous Circulation – Arteriovenous Anastomoses. Retrieved September 27, 2020, from https://teachmephysiology.com/cardiovascular-system/special-circulations/cutaneous-circulation/

Frostbite. (2019, March 20). Retrieved September 27, 2020, from https://www.mayoclinic.org/diseases-conditions/frostbite/symptoms-causes/syc-20372656

WMS Blog Entry No. 2: Long Distance Backpacking, the Wisdom of Dr. Sue Spano

Graduate of Temple University School of Medicine, Director of Wilderness Medicine Fellowship at University of California San Francisco Fresno Department of Emergency Medicine, Sue Spano, MD, FACEP, FAWM presented twice this year at the Wilderness Medicine Society’s annual (virtual) conference. Boasting the experience of about a thousand miles of the Pacific Coast Trail in Oregon and California and other recreational excursions, she shared a wealth of advice and personal recommendations for long distance backpacking.

To put it all into perspective, she referenced the Pacific Coast Trail (PCT), John Muir Trail (JMT) and the Appalachian Trail, each covering 2650 mi, 211 mi, and 2200 mi respectively. These are trips that last, easily, months. The general time frame for many of her recommendations is about five to six months.

Not surprisingly, the issue of weight comes up frequently for travelers. There are a number of studies done on this, from body mass index to base pack weight, and every ounce counts. While fitness level does not directly correlate to the incidence of injury, increase in BMI does correlate directly to increased risk of illness, injury, and trail evacuation. It is notable, however, that in a poll, about 2/3 of those hiking the PCT and well above those on the JMT trained before embarking on the trail, and most of them considered themselves to be “above average” in their level of fitness (7 or 8 on a scale of 1 to 10).

Although Dr. Spano does recommend carrying backups of three things — lighters, water treatment systems, and first aid — when it comes to base weight, there are several items that may be worth a little more investment for fewer ounces. Right off the bat: trail runners over boots. The mere difference in ounces becomes significant after so many miles, and the flexibility of softer shoes helps prevent a lot of discomfort (blisters, for example). She also notes that trail runners are more breathable and dry more quickly, sharing that she doesn’t typically bother to take them off to cross water or in snow as they will dry right on your feet along with your socks. It would be interesting to hear accounts of the footwear of preference on the Colorado Trail, where elevations are frequently higher and there may likely be more snow in general.

In another poll, 21.8 lbs was the base weight carried by packers, most of whom would have carried less in hindsight. This can be achieved by investing in lighter backpacks, tents, hiking poles, sleeping bags and sleeping pads, specifically. ULA Equipment out of Logan Utah makes an ultra-light pack that Dr. Spano prefers, “no conflict of interest”, just her personal favorite.

Skip the toothpaste, Spano urges. It doesn’t actually clean your teeth, so you might as well just brush with water.

Something else we’re seeing more and more of on distance excursions is tents that incorporate hiking poles as tent poles. Hiking poles themselves are recommended more and more as well, as they distribute more weight away from your legs.

Toilet paper must be packed out with you on much of the trail these days! Thus, the rise of the “backcountry bidet”, which you can make yourself by poking holes in the cap of a plastic liter water bottle. “You come out feeling like you had a full shower,” Spano testifies, and the water you use does not have to be filtered or potable.

Water! Know where your next water source will be. “Camel up at water sources … When you get to a water source, spend some real quality time there soaking your feet, cleaning your bandana, drinking as much water as you possibly feel like you want. Because the only time that your water is going to be ice cold is when you’re at that stream. Anything that you carry with is going to get really warm … Your easiest way to carry water is in your belly.”

When it comes to long distance backpacking, one of the finest pieces of advice Dr. Spano offers is that you should always be upgrading and optimizing your strategy:

“A person who hasn’t changed their backpacking practices in the last 10 years is not a person that I would really want to backpack with. A person who practices medicine the same way they did 10 years ago is not someone I want to practice medicine with. You should always be improving your gear, improving your behaviors, improving the way you approach the same challenge so that you’re a better backpacker as a result.”

Her hour-and-a-half practicum is available on the Wilderness Medicine Society website.

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.