Category Archives: Child Growth & Development

Children grow and develop differently at high altitudes than they do at sea level

P.L.A.Y. AT ALTITUDE CAMPAIGN

This summer, as part of my RN to BSN program with UCCS, I needed to complete a public health course with clinical. I decided on an unusual path by joining the team of pediatrician and public health activist, Dr. Ebert-Santos.

Dr. Ebert-Santos has been the primary care giver for my two boys, now 8 and 4 years old, since birth. I would venture to say that Dr. Chris, as we call her, is known by most families in Summit County. Not only are we a mountain community but we are a community committed to growing in mindful ways. A lot of thought goes into how we operate our community events and care for our families. Dr. Ebert-Santos has been very active on more community issues than I can address here. But, let’s include water quality, health insurance/coverage initiatives, and pretty much every community health walk for a cause, healthy community eating and garden initiatives, bike to work week, trail maintenance…you get the picture. For these reasons, I finagled my way into her office this summer.

Our community is one of the healthiest in the nation according to national statistics. We are one of the lowest on obesity, adult diabetes, and hypertension. For this reason, along with the beauty of the Rocky Mountains, we have a lot more people moving here than ever before. “Summit County has recently exceeded a permanent resident population of 30,000. This is a 28.7% increase in full-time residents since 2000” (Summit County Colorado, 2017).

One major health issue that Dr. Ebert-Santos is bringing to light with her current research shows that high altitude kids are often born at lower birth weights, catching up on the national growth charts within the first few years. These babies are not unhealthy by high altitude standards. The problem is that statewide and nationally, we have yet to set standards specific to high altitude children. Dr. Ebert-Santos is making a big push to address this.

Dr. Ebert-Santos is also the doctor most likely to check your newborn for wellness and release them home, safe and sound, following birth. Many of our mountain babies go home with an infant oxygen tank that you will see parents wearing as backpacks. Dr. Ebert-Santos has been collecting and analyzing data on high altitude kids for years now. At higher altitudes, we have lower air pressure and that means decreased bioavailable oxygen. While many people are aware that acute mountain sickness and high altitude pulmonary edema (HAPE) are potential obstacles to overcome when travelling up into the Rockies, many people do not know that our resident children, who haven’t even travelled down from altitude and back up, are also prone to these illnesses. High altitude pulmonary edema in children living at altitude can follow the sort of respiratory infections that kids are prone to catching as they make their way through school while their immune systems are developing. This is often entirely treatable with oxygen alone.

The problem Dr. Ebert-Santos has identified is that, assuming residents are acclimated and therefore unlikely to have HAPE, kids here are often diagnosed with pneumonia instead of HAPE. Treatment of pneumonia often involves a hospital stay with antibiotics and other medications on board. Dr. Ebert-Santos sees dozens of children each year who have what she would like others in the medical community to recognize as Mountain Resident HAPE. With proper diagnosis, these children can be treated with oxygen and improve within a matter of days. Awaiting recovery from pneumonia when there is no pneumonia present can be detrimental to children.

Dr. Ebert-Santos will have her research published this year in the Journal of High Altitude Medicine and Biology. I had the fortunate experience of working this summer, with Dr. Ebert-Santos and her dedicated team, to create a public health message relevant to her work. Office manager Meaghan Zeigler, who has a master’s in public health, was invaluable to my education there.  I was happy to find that our local oxygen companies were ready to join in this effort to educate the public. Big thanks to Summit Oxygen Inc. in Frisco, AlpinAire in Breckenridge, and AeroCare in Silverthorne! Below you can see the acronym I created to help high altitude families recognize the signs and symptoms of high altitude illnesses, including HAPE and Mountain Resident HAPE.

Stay safe and keep breathing Summit County!

Juli Joyce, RN

 

Can I take my child up a 14er?

There are over fifty 14ers in Colorado. A 14er is a mountain with an elevation of at least 14,000 feet. If summited, these majestic peaks afford their climbers spectacular views of the surrounding landscape. Being that many people within Colorado – and those who come to visit – are active, a question often voiced by parents is: “Can my child hike up a 14er with me?” Unfortunately, there is no straightforward answer to this question and the simplest response is: it depends.

According to recent research, it appears that children are largely similar to adults when it comes to adapting to higher elevations. Research examined children’s short-term cardiorespiratory adaptation, incidence of acute mountain sickness, hypoxic ventilatory response, and maximal exercise capacity and found little variance between adults and children (Garlick, O’Connor, & Shubkin, 2017).

When CAN you take your child up a 14er? There are a multitude of factors that affect when and if a child can climb a 14er. For example, children develop and mature at different rates. This might affect whether your 11-year-old is able to climb a 14er, compared to someone else’s 11-year-old. Additionally, some children grow up being exposed to technical hikes and climbs, while others are not. This affects ability level and is certainly something to keep in mind (Provance, n.d.). Another factor to keep in mind is whether you’re child has an underlying condition. For example, conditions such as congenital heart disease, asthma, sickle cell anemia, an upper respiratory infection, or an ear infection can significantly increase the risk for high altitude illnesses (Garlick, O’Connor, & Shubkin, 2017, p. 6). Yet another factor is whether you live at altitude or are visiting from a lower elevation. There is a strong recommendation for those individuals traveling from a lower altitude to take some time to acclimate. Spending a night or two at an intermediate altitude is recommended. Additionally, be mindful not to overdo it when you do ascend to a higher elevation: stay hydrated and don’t overexert yourself. If you decide to climb a 14er, it is imperative that you give your body at least a few days to acclimate to the altitude (“How can I optimize my health at high altitude?”, 2016).

So, what’s the bottom line? Since it isn’t possible to place a concrete age on when it’s okay for your child to climb a 14er, it is ultimately up to you to know you’re child’s limits and to decide if such a challenging hike is right for you and them. The most important thing is to make sure that everyone remains safe.

If you do decide to set out on the challenge of hiking up a 14er, there are some things to remember in order to keep yourself and your child as safe as possible and ensure that the hike is an enjoyable experience for all (Kirkland, 2015):

  • Set out early: Summiting the peak by noon is recommended in order to avoid afternoon weather, thunderstorms, and potential lightning strikes.
  • Start slow and easy: It’s important for you to determine whether or not you’re child will be able to summit a 14er. Start with easy hikes and build up over time so that you have a good understanding of your child’s abilities.
  • Know the weather forecast: Check the weather before you set out to prevent getting stuck in a storm.
  • Clothing: Wear appropriate clothing. It is important to layer since it can be colder on top of the mountain. Additionally, it is important to wear clothing that protects you from the elements (including the sun!).
  • Protect yourself from the sun: The sun can be very strong when one is high up. It is very important to ensure that your child is adequately protected from the sun: sunscreen, clothing, etc.
  • Food and Fluids: Bring adequate nutrition and hydration.
  • Be prepared to turn around ahead of time: There are many things that could cause you to turn around. It’s very important to accept ahead of time that you might not manage to summit the peak and to accept that’s okay.
  • High altitude illness: It is incredibly important for you to know the symptoms of high altitude illness and be prepared to turn around should your child exhibit any of them. Symptoms of high altitude illness include: fussiness or irritability, refusal to eat, lack of energy, nausea and/or vomiting, dizziness, and light headedness (Provance, n.d.).

References:

Garlick, V., O’Connor, A., & Shubkin, C. D. (2017). High-altitude illness in the pediatric population: A review of the literature on prevention and treatment. Current Opinion in Pediatrics, doi:10.1097/MOP.0000000000000519

How can I optimize my health at high altitude? (2016). Retrieved from http://www.altitudemedicine.org/optimizing-health-at-altitude/

Kirkland, E. (2015, May). Taking kids to new heights: Hiking Colorado’s “14er” mountains. Retrieved from http://www.outdoorfamiliesonline.com/hiking-colorados-14er-mountains/

Provance, A.J. (n.d.). What age can my child start hiking fourteeners? Retrieved from https://www.childrenscolorado.org/conditions-and-advice/new-and-featured-articles/sports-safety/when-can-kids-start-hiking-fourteeners/

Rianne Smeele, BSN, RN, Regis University FNP Student

Is There a Need for At Home Infant Monitors?

People living at higher altitude, such as here in Summit County, where the elevation is above 9,000 feet, commonly have lower oxygen saturations than people residing at lower elevations. It has been suggested, but not proven, that hypoxia (low oxygen saturation) may be a contributing factor to SIDS. Does this mean parents at high elevations should constantly monitor their healthy babies at night? The simple answer? No.

A study from 2015 states that “residence at high altitude was significantly associated with an increased adjusted risk for SIDS.”1 However, one of the authors from that study, Dr. David Katz, a cardiologist at the University of Colorado Denver, states that “the absolute risk of SIDS remains very low, and … this is in no way a call to abandon residence in or visits to high-altitude” locations. The authors stress ’that even at high elevations, the risk of SIDS is still low. Even above 8,000 feet, a baby’s chance of dying of SIDS is only 0.079 percent.” 5

The Owlet is a new infant physiologic monitor built into a sock that monitors heart rate and oxygen saturation. It connects to smartphones and is advertised to alert parents when something is wrong with their baby. However, their website clearly states the $250 device is “not a medical device,” and is only intended to provide a “peace of mind” for parents. It is “not intended to diagnose, treat, mitigate, cure, or prevent any disease or condition.”4 Healthy infants sometimes have desaturations less than 80% without consequence, and these monitors could lead to over-diagnosis and instill unnecessary fear into parents of healthy babies.2 An American Academy of Pediatrics policy states “home cardiorespiratory monitoring should not be prescribed to prevent SIDS.” Multiple studies have been unable to provide a need for their use on healthy babies.3

We bought an Owlet to try for our clinic, and were not impressed. One employee had a difficult time getting it to stay on her newborn; whereas another employee said it didn’t hold a charge very well, and the alarm would sometimes go off without reason.

Healthy babies are healthy babies! There are proven practices that decrease the risk of SIDS—supine sleep position, safe sleeping environments, and elimination of prenatal and postnatal exposure to tobacco smoke.3 Currently, there is no proven need to purchase and use infant physiologic monitors, such as the Owlet, on your healthy babies!

 

Kayleigh Belsey, PAS-II

Midwestern University Physician Assistant Program

Clinical Rotation- June 2017

References

  1. Katz, D., MD, Shore, S., MD, Bandle, B., MPH, Niermeyer, S., MD, MPH, Bol, K. A., MSPH, & Khanna, A., MD. (2015). Sudden Infant Death Syndrome and Residential Altitude. Pediatrics, 135(6). Retrieved June 25, 2017, from http://pediatrics.aappublications.org/content/pediatrics/early/2015/05/20/peds.2014-2697.full.pdf
  1. Bonafide, C. P., MD, MSCE, Jamison, D. T., MBA, BSEE, PMP, & Foglia, E. E., MD, MSCE. (2017). The Emerging Market of Smartphone-Integrated Infant Physiologic Monitors. Journal of the American Medical Association, 317(4), 353-354.
  1. Apnea, Sudden Infant Death Syndrome, and Home Monitoring. (2003). Pediatrics, 111(4), 914-917. Retrieved June 25, 2017, from http://pediatrics.aappublications.org/content/pediatrics/111/4/914.full.pdf
  1. Http://www.owletcare.com/. (n.d.). Retrieved June 25, 2017.
  1. Pappas, S. (2015, May 25). Sudden Infant Deaths Linked to Elevation. Retrieved June 25, 2017, from https://www.livescience.com/50956-sudden-infant-deaths-elevation.html 

Slumber Up: Sleeping at High Altitude

 

Does high altitude affect sleep quality? The answer is that for some, it does. If you’ve ever quickly arrived to the mountains on a ski or summer getaway, you may have experienced fitful and non-restful sleep. Individual responses to high altitude may vary, however there is an understood physiological basis for sleep disruption at altitude.

 

A phenomenon known as “periodic breathing of altitude” is commonly experienced above 2500 m of elevation (about 8200 ft) in those not previously acclimatized [2]. This is a common sleep elevation in Colorado mountain towns such as Frisco, Colorado (proud home to this blog!). Periodic breathing of altitude may be more likely to occur as sleeping altitude increases. Here’s the science behind it:

 

The decreased atmospheric pressure at altitude results in less oxygen driven into the lungs and through to the bloodstream. The body attempts to compensate by increasing the rate of breathing (tachypnea), which also causes more carbon dioxide to be exhaled. Chemoreceptors sense the decrease in carbon dioxide and signal the body to stop breathing temporarily (apnea) to correct the imbalance. Alternating cycles of tachypnea and apnea continue to occur during sleep. The result is decreased REM sleep, which is a critical restful and rejuvenating phase [2].

 

Worried about your next sleepless night on a mountain trip? Fortunately, there’s acetazolamide (Diamox). It is a carbonic anhydrase inhibitor that works by eliminating bicarbonate in the urine, which is a base. The body subsequently becomes more acidic, and that acid in the bloodstream is readily converted to carbon dioxide. The body is “tricked” into thinking that there is plenty of carbon dioxide present in the bloodstream, and periods of apnea during sleep may be reduced or eliminated [3].

 

To help prevent periodic breathing of altitude, adults can take acetazolamide preferably starting on the day before ascent or on the first day at altitude. Adults typically take 125 mg twice a day until either 3 days at altitude has been reached or descent back down has occurred [1]. Ask your healthcare provider about what’s right for you. Consider acetazolamide next time you’re sleeping up high, and get that refreshing sleep that allows you to better enjoy the things you love at altitude!

 

-Justin Murphy, PA-S

Red Rocks Community College Physician Assistant Program

Clinical Rotation- May 2017

 

References

1) Athena Health (2017). Acetazolamide generic. Epocrates Online. Retrieved from: https://online.epocrates.com/drugs/12701/acetazolamide/Adult-Dosing

2) Gallagher, S. A., Hackett, P., & Rosen, J. M. (2017). High altitude illness: Physiology, risk factors and general prevention. Up To Date, Topic 181,  Version 20.0.  Retrieved from: https://www.uptodate.com/contents/high-altitude-illness-physiology-risk-factors-and-general-prevention?source=search_result&search=high%20altitude%20sleep&selectedTitle=2~150

3) Winter, C. (2016). Sleeping around: How to sleep at high altitude. Huffington Post. Retrieved from: http://www.huffingtonpost.com/entry/sleeping-around-how-to-sleep-at-high-altitude_us_5806da29e4b08ddf9ece1228?ncid=engmodushpmg00000006

Concussions and Altitude

With the number of concussions on the rise it is important to have an understanding of the occurrence of concussions as well as the management of concussions at higher elevations. Although the incidence of concussions is on the rise everywhere, high school athletes playing at higher elevations may actually be less likely to sustain a concussion when compared to athletes playing the same sports at sea level.

The Cincinnati Children’s Hospital conducted a research study examining the relationship between concussions and altitude among NFL athletes. The results of the study demonstrated a 30% decrease in the incidence of concussions in athletes playing at higher elevations (greater than or equal to 644 ft above sea level) (Myer et al., 2014). While there is no definitive explanation for this it is believed to be linked to the physiological changes of the brain at altitude. Concussions are typically caused from the rapid acceleration/ deceleration of the brain inside the skull. The hypothesis is that at higher elevations the brain tends to swell due to a mild increase in intracranial volume creating a tighter fit of the brain in the skull, leading to less damage caused by sheer forces (Myer et al., 4014).

While concussions may not be as common at elevation they are still occurring more than ever with detrimental long term effects if not recognized and treated properly. One thing we can do to recognize and treat concussions is to complete an ImPACT test. ImPACT (Immediate Post-Concussion Assessment and Cognitive Testing) is a computerized neurocognitive test which helps to assess neurologic changes after a concussion and helps guide recovery (Glendenning, 2017). The idea behind ImPACT is for individuals to have a baseline test, prior to any head injury/ concussion, and if a traumatic brain injury occurs, that individual would then undergo a post-concussion test, comparing the results to their baseline.  This helps better determine when it is safe for that individual to return to play without sustaining further injuries to their brain.

With the active lifestyle of children and adults in living at high altitudes, ImPACT testing may be just another step to consider when getting your bike tuned up for bike season, or your skis ready for a weekend on the slopes. Even if you aren’t a competitive athlete on a designated team, anyone at risk of hitting their head is at risk of suffering a concussion and would benefit from completing a baseline ImPACT test. ImPACT testing is available for only $15 at Avalanche Physical Therapy and takes only 30 minutes to complete (Glendenning, 2017). By being pro-active now you can help ensure a safer and healthier recovery in the future.

Schedule your baseline ImPACT testing at Avalanche Physical Therapy today!

www.avalanchetherapy.com

Betsy Metz, PA-S

Physician Assistant Student

Red Rocks Community College

References

Glendenning, L. (2017, March 7). Cognitive testing tool used to assess traumatic brain injuries in Summit County. Summit Daily News, p. 5.

Myer, G. D., Smith, D., Barber Foss, K. D., Dicesare, C. A., Kiefer, A. W., Kushner, A. M., … & Khoury, J. C. (2014). Rates of concussion are lower in National Football League games played at higher altitudes. journal of orthopaedic & sports physical therapy, 44(3), 164-172.

Red Cheeks in Mountain Kids

img_2010Chinese doctors presenting at the 7th World congress of Mountain and Wilderness Medicine in Telluride last month showed us a familiar photo. They called it Plateau Facial Persistence Erythema and we commonly see it here in Summit County. This rash occurs in women and children under conditions present at the plateau region at high altitude with cold and windy winter temperatures. It’s characteristics are erythemacheeksor redness, of the cheek prominences that is darkest in the center and can even look purple in color. The redness can spread in a spider-like pattern from the center with a gradual transition to normal-appearing skin. It is painless and often symmetrical. The cause of this rash is unclear but is thought to be related to changes at high altitudes affecting vasomotor nerve function, decreased capillary elasticity with persistent expansion, and increased blood viscosity secondary to increased hemoglobin. Children have delicate skin that may not adapt as easily to this extreme environment, causing the rash. Treatment primarily involves prevention by avoiding cold temperatures, windy areas, and UV radiation. In other countries these rosy red cheeks are not considered a disease, but rather a beautiful variant of normal!

High-Altitude Lung Edema Can Mimic Pneumonia in Kids, Even Without Travel by Rob Goodier

Dr. Chris has the medical community talking about HAPE!!!

“Health providers should advise patients who live at or travel to high altitude to have a pulse oximeter and check their oxygen levels if they are unwell,” the study’s author, Dr. Christine Ebert-Santos at the Ebert Family Clinic in Frisco, Colorado, told Reuters Health…

Click the link to read more:

High-Altitude Lung Edema Can Mimic Pneumonia in Kids, Even Without Travel by Rob Goodier

http://www.medscape.com/viewarticle/867210

Those precious epi-pens at altitude

With all the news about the 400% price increase in epi-pens, we don’t want to waste them. So what if we are backpacking at high altitude and eat some peanut butter by mistake in our energy bar? Then our face swells up like a chipmunk and we start to wheeze? We whip out the epi-pen from the external pocket of our pack only to find out it is frozen!!  Oh, oh. What do we do now? Good news! at the 7th World Congress of Mountain and Wilderness Medicine in Telluride we heard the exact scenario described. It happened to a scientist, who then did a study to measure the effectiveness of the epi-pen after freezing and thawing. It still worked! So don’t throw out your frozen epinephrine. thaw and use.

Another tip: if you can’t afford the new price of the epi-pen, maybe your physician could prescribe injectable epi with a syringe to have on hand.

Reflection to MRHAPE in the Mountains: Resident High Altitude Pulmonary Edema

In beginning my Physician Assistant rotation at Ebert Family Clinic I was introduced to the exciting research of Christine Ebert-Santos, MD.  The research surrounded a condition known as High Altitude Pulmonary Edema (HAPE). In growing up at altitude myself, at 6,926 feet in Jamestown Colorado, I have had some exposure to the effects of high altitude. Acute Mountain Sickness (AMS) is a condition that I am more familiar with and in reading Dr. Ebert-Santos’ research it became clear to me that HAPE is a more severe complication to those ascending to or living at altitude, especially if they develop an initial respiratory illness. In her paper Dr. Ebert-Santos describes several pediatric case studies that demonstrate the characteristics of this treatable condition. These patients presented with tachycardia (fast heart rate), tachypnea (fast breathing), decreased oxygen saturation, and rales (abnormal breath sound).  Many of the children described were seen directly after an initiating illness such as the Flu. While seen in the clinic, or during admission to the hospital, these patients were treated with oxygen. The fact that HAPE can be treated with something as simple as oxygen is noteworthy.

Through her research Dr. Ebert-Santos has demonstrated that HAPE should be considered in all pediatric patients presenting to clinics  or emergency rooms at altitude with hypoxia (decreased oxygen saturation) and a recent viral illness. Through placing HAPE in their differential diagnosis, clinicians can avoid giving excessive inhaled steroid treatments and unneeded antibiotics. Awareness of the prevalence of this disease in both travelers and residents alike ensures a decrease in the incidence of unfavorable outcomes from this potentially fatal condition.

Submitted by Kelly Kyte, Physicians Assistant Student from Red Rocks Community College Fall Rotation 2016