All posts by Roberto Santos

Roberto Santos is an avid outdoorsman, prolific reader, writer and web developer currently stationed in the Colorado high country. Originally from the Northern Mariana Islands, his work, study and adventures have taken him from surfing across the Pacific, to climbing the highest peaks in Japan and Colorado.

WMS Blog Entry No. 2: Long Distance Backpacking, the Wisdom of Dr. Sue Spano

Graduate of Temple University School of Medicine, Director of Wilderness Medicine Fellowship at University of California San Francisco Fresno Department of Emergency Medicine, Sue Spano, MD, FACEP, FAWM presented twice this year at the Wilderness Medicine Society’s annual (virtual) conference. Boasting the experience of about a thousand miles of the Pacific Coast Trail in Oregon and California and other recreational excursions, she shared a wealth of advice and personal recommendations for long distance backpacking.

To put it all into perspective, she referenced the Pacific Coast Trail (PCT), John Muir Trail (JMT) and the Appalachian Trail, each covering 2650 mi, 211 mi, and 2200 mi respectively. These are trips that last, easily, months. The general time frame for many of her recommendations is about five to six months.

Not surprisingly, the issue of weight comes up frequently for travelers. There are a number of studies done on this, from body mass index to base pack weight, and every ounce counts. While fitness level does not directly correlate to the incidence of injury, increase in BMI does correlate directly to increased risk of illness, injury, and trail evacuation. It is notable, however, that in a poll, about 2/3 of those hiking the PCT and well above those on the JMT trained before embarking on the trail, and most of them considered themselves to be “above average” in their level of fitness (7 or 8 on a scale of 1 to 10).

Although Dr. Spano does recommend carrying backups of three things — lighters, water treatment systems, and first aid — when it comes to base weight, there are several items that may be worth a little more investment for fewer ounces. Right off the bat: trail runners over boots. The mere difference in ounces becomes significant after so many miles, and the flexibility of softer shoes helps prevent a lot of discomfort (blisters, for example). She also notes that trail runners are more breathable and dry more quickly, sharing that she doesn’t typically bother to take them off to cross water or in snow as they will dry right on your feet along with your socks. It would be interesting to hear accounts of the footwear of preference on the Colorado Trail, where elevations are frequently higher and there may likely be more snow in general.

In another poll, 21.8 lbs was the base weight carried by packers, most of whom would have carried less in hindsight. This can be achieved by investing in lighter backpacks, tents, hiking poles, sleeping bags and sleeping pads, specifically. ULA Equipment out of Logan Utah makes an ultra-light pack that Dr. Spano prefers, “no conflict of interest”, just her personal favorite.

Skip the toothpaste, Spano urges. It doesn’t actually clean your teeth, so you might as well just brush with water.

Something else we’re seeing more and more of on distance excursions is tents that incorporate hiking poles as tent poles. Hiking poles themselves are recommended more and more as well, as they distribute more weight away from your legs.

Toilet paper must be packed out with you on much of the trail these days! Thus, the rise of the “backcountry bidet”, which you can make yourself by poking holes in the cap of a plastic liter water bottle. “You come out feeling like you had a full shower,” Spano testifies, and the water you use does not have to be filtered or potable.

Water! Know where your next water source will be. “Camel up at water sources … When you get to a water source, spend some real quality time there soaking your feet, cleaning your bandana, drinking as much water as you possibly feel like you want. Because the only time that your water is going to be ice cold is when you’re at that stream. Anything that you carry with is going to get really warm … Your easiest way to carry water is in your belly.”

When it comes to long distance backpacking, one of the finest pieces of advice Dr. Spano offers is that you should always be upgrading and optimizing your strategy:

“A person who hasn’t changed their backpacking practices in the last 10 years is not a person that I would really want to backpack with. A person who practices medicine the same way they did 10 years ago is not someone I want to practice medicine with. You should always be improving your gear, improving your behaviors, improving the way you approach the same challenge so that you’re a better backpacker as a result.”

Her hour-and-a-half practicum is available on the Wilderness Medicine Society website.

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

WMS Blog entry No. 1: The Rule of 3’s and other pearls from the annual Wilderness Medical Society Conference 2020

Over 800 participants from 25 countries joined the virtual conference this year which included Dr. Chris’ poster presentation on growth at altitude. Over the next several months we will extract the most relevant information to publish in our blog, starting with:

The Rule of 3’s

You can survive 3 minutes without oxygen

                              3 hours without shelter in a harsh environment

                              3 days without water

                              3 weeks without food

Dr. Christine Ebert-Santos presents her research on growth in children at high altitude, “Colorado Kids are Smaller.”

We will be sharing some of the science, experience and wisdom from these meetings addressing how to survive. For example, Dr. Peter Hackett of the Hypoxia Institute reviewed studies on how to acclimatize before travel or competition in a low oxygen environment.

Susanne Spano, an emergency room doctor and long distance backpacker discusses gear, how to build an emergency shelter in the wild, and when it is OK to drink from that refreshing mountain stream.

Michael Caudell presenting on plant toxicity.

Michael Caudill, MD shares what NOT to eat when you are stranded in the wilderness in his lecture on toxic plants.

Presentations included studies of blood pressure in people traveling from sea level to high altitude, drones delivering water to stranded hikers, an astronaut describing life and work at 400,000 m, what is the best hydration for ultra athletes, how ticks can cause meat allergy, and, as always, the many uses for duct tape.

Duct tape for survival.

We will also update you on the treatment of frostbite as well as a discussion about “Climate change and human health.”

Sign up for our regular blog updates so you can be updated on wilderness and mountain medicine!

Mountain Kids are Smaller

How does living at high altitude affect the human body? It’s a complicated question that researchers have been trying to answer for years.

It takes two things to grow: adequate nutrition and the body’s ability to convert calories into energy.  Observations over 20 years at the Ebert Family Clinic suggest that the decreased oxygen levels at altitude may interfere with optimal utilization of calories or decrease appetite and intake in small children.

After opening her pediatric clinic in Frisco, CO in 2000, Dr. Christine Ebert-Santos noticed that children living at high altitude are smaller than average. Dr. Chris and Meredith Caines Pollaro, an occupational therapist with expertise in feeding and growth in children, organized a group for parents of underweight children but did not find any consistent abnormalities. After this, Dr. Chris decided that smaller growth might be a normal pattern for little ones at altitude. The children were otherwise healthy, with nutritional analysis showing adequate intake, and no signs of endocrine or gastrointestinal problems.

Graduate student Aaron Clark reviewing high altitude growth charts with PA student Laura Van Steyn and Dr. Christine Ebert-Santos.

Research on growth in children at altitude is sparse. So, in 2009, Dr. Chris recruited her daughter Anicia Santos to launch a detailed data analysis.  Anicia worked with one of her math professors at the University of Colorado to convert the data into a unique growth chart for altitude which demonstrated the downward shift. Twice the number of infants and toddlers had weights below the 3rd percentile of the World Health Organization growth charts than at lower altitudes. Heights were also decreased. After years of gathering data, Dr. Chris and Anicia are getting ready to share their findings with the help of Logan Spector, PhD and graduate student Aaron Clark.

Spector, chairman of the department of epidemiology at the University of Minnesota, was concerned about his two nieces who lived in Summit County who were not fitting into the “normal” growth pattern. This sparked his interest in Dr. Chris’ research. He was able to recruit Clark to take on the project.

In the first study of its kind in North America, the growth charts of 970 kids living in Colorado’s high country are analyzed. With over 9,000 pieces of data, one thing is clear. From birth to 18 months of age, children living at altitude weigh much less than the average child. Length is also considerably decreased, though the weight discrepancies are more drastic. These findings were studied extensively and found to be statistically significant. Using the generalized estimating equation (GEE), Clark was able to analyze the data in a non-linear way. This compensates for correlated data. Clark created density graphs for both male and female children to depict these findings (see figures). When the graph line is fairly close to 1 on the y-axis, or a straight line across the top, this means there is little difference from the standard growth chart (age 2-18). The farther away from 1 on the y-axis, the more significant difference there is compared to standard growth charts (age 0-2).

There is no denying that something is causing these high-altitude children to fall off of the growth charts. The next logical question would be, what are the effects of this smaller growth rate? Initial research shows that children at altitude are catching up on the growth curve by age two. There does not appear to be any long-lasting deficits from the initial smaller growth.

After combing through research articles, a new study from Ladakh, India also displayed a correlation between children living at high altitude and smaller size. Specifically in Colorado, another study shows lower birth weights at high altitude, however, it does not follow the growth patterns of the children over time.

From what this research shows,  a unique growth chart for children living at high altitude would be helpful. A new growth chart would account for the variations in size seen at altitude. This could save thousands of dollars in unnecessary testing looking for underlying disease or endocrine deficiencies as well as the anxiety for parents being told that their child has failure to thrive or is not being fed. Instead of being concerned when a child falls low on the growth chart, one might expect to see smaller children at altitude.

There is still much research to be done in this field. Hopefully, this study will serve as fuel for future studies.

Laura Van Steyn is a 3rd year Physician Assistant student studying at Midwestern University in Glendale, AZ. She graduated from the University of Colorado in Boulder with a degree in integrative physiology. After that, she worked as a CNA at Littleton Adventist Hospital prior to starting PA school. She hopes to work in women’s health or dermatology after graduating. During her six weeks at Ebert Family Clinic, she has joined Dr. Chris for numerous hikes and has truly enjoyed escaping the Arizona summer heat!

References

Yang, W.-C.; Fu, C.-M.; Su, B.-W.; Ouyang, C.-M.; Yang, K.-C. Child Growth Curves in High-Altitude Ladakh: Results from a Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 3652.

Bailey, B.; Donnelly, M.; Bol, K.; Moore, L.; Julian, C. High Altitude Continues to Reduce Birth Weights in Colorado. Matern Child Health J 2019, 23(11): 1573-1580

COVID-19 Update: A Look at How the World’s Highest Altitude Populations Have Been Affected

As the gateway to Machu Picchu, the city of Cusco, Peru attracts over 3 million tourists from all around the globe each year. With this many people passing through the city, you can imagine why local residents feared the worst when the COVID-19 outbreak began. However, out of a population of approximately 429,000 people, the city has only four COVID-19 related deaths – three tourists who traveled to the area and one native with previous risk factors.

Machu Picchu

Machu Picchu, a UNESCO World Heritage Site, brings 3 million tourists from around the world to the Cusco region of Peru every year.

One death out of 196 confirmed cases for the city makes for a remarkably low fatality rate of 0.5% for the native population. Peru as a whole has a fatality rate closer to 3% with over 6,000 deaths, making it one of Latin America’s most affected countries. Many believe the fatality rate to be even higher as testing has not become widely available in the country.

To understand why Cusco is such an outlier when compared to the rest of the country, there are several factors to take into consideration. One of those factors that researchers haven’t quite been able to figure out, but believe plays a role, is altitude. The Cusco region of Peru sits at 11,152 ft elevation compared to the capital city of Lima that sits at only 512 ft elevation.

Research comparing the high-altitude regions of Tibet, Bolivia, and Ecuador has revealed similar trends. A study completed April 22, 2020 and published in the June 2020 scientific journal “Respiratory Physiology & Neurobiology” indicates that populations living above 9,842 feet elevation reported significantly lower levels of COVID-19 cases than populations living at lower elevations. The research showed the infection rates in the Andes Mountains of Bolivia were one third the infection rates the rest of Bolivia, and the infection rates in the Andes Mountains of Ecuador were one fourth of the rest of Ecuador. In both Bolivia and Ecuador, the areas with the highest concentration of COVID-19 cases were located at an elevation close to sea level.

At an elevation of 11,942 ft, La Paz, Bolivia is the highest capital city in the world.

Why populations living at higher altitudes are experiencing lower infection rates is still not well understood, but there are a few theories at play. It is hypothesized that people living at altitude are able to live in a state of chronic hypoxia, or a state of chronically low oxygen in the blood. Hypoxia is one of the conditions caused by COVID-19, and if a person’s body is already used to low levels of oxygen, their symptoms may not be as severe. There are other environmental considerations at altitude that may shorten the life-span of the COVID-19 virus, including high levels of UV radiation that can kill the virus, low barometric pressure that does not support the weight of the aerosolized droplets that the virus lives in, and dry thin air that does not support the transmission of aerosolized droplets.

However, as intriguing as the effect of altitude on COVID-19 statistics is, it is important to note that there are several other proven factors that come into play when looking at these populations. First, most high-altitude towns and cities tend to be rural. When population density per square mile drops, the rate of transmission of infectious diseases also drops – rural settlements allow for natural social distancing. Second, populations living at higher altitudes have lower rates of obesity and generally have better overall health. Living at high altitude causes a reduction in the hormones that signal hunger, leading to consumption of fewer calories. Additionally, completely normal daily activities in a state of chronic hypoxia due to low levels of available oxygen in the air raises the body’s resting metabolic rate, leading to burning more calories. The healthier a person is prior to contracting an illness, the more likely their body is to be able to fight it off successfully.

Research regarding how altitude affects COVID-19 transmission, infection, and recovery rates is ongoing. It may be too soon to tell exactly why or how altitude comes in to play, but early findings are suggesting that now is a great time to be a resident of the great Rocky Mountains – but then again, when is it not?

References

https://www.washingtonpost.com/world/the_americas/coronavirus-andes-peru-ecuador-bolivia-tibet-high-altitude/2020/05/31/0b2fbf98-a10d-11ea-be06-af5514ee0385_story.html

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7207123/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175867/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094724/

https://en.wikipedia.org/wiki/Machu_Picchu#/media/File:80_-_Machu_Picchu_-_Juin_2009_-_edit.2.jpg

https://en.wikipedia.org/wiki/Machu_Picchu#/media/File:80_-_Machu_Picchu_-_Juin_2009_-_edit.2.jpg

Megan Schiers is a 3rd year Physician Assistant student studying at Midwestern University in Glendale, AZ. She graduated from Idaho State University in Pocatello, ID with a Bachelor of Science in Dental Hygiene and worked as a dental hygienist in Strasburg, CO for two years prior to starting PA school. She is passionate about increasing access to healthcare in rural areas and hopes to specialize in emergency medicine or cardiothoracic surgery following graduation this fall. During her six weeks in Frisco, CO, she has enjoyed hiking in the beautiful mountains, camping at Camp Hale Memorial, visiting Maroon Bells, and checking out Black Canyon of the Gunnison National Park.

Backcountry & Avalanche Safety: Insight from Backcountry Athlete Dan Beerman

Another Spring season in Colorado. The ski resorts have closed early per the COVID-19 protocol, along with most other establishments. Even on the normal schedule, most ski resorts would have been closed for the season by now, bringing more people to the backcountry. But this year seems to have seen an upswing in backcountry activity, where many people are going to stay active while limiting exposure to others. Just over a week ago, a team of 20 search and rescue volunteers rescued a 26-year-old man who had fallen hiking on steep terrain around St. Mary’s Glacier, Colorado. Last year, a total of 10 snowmobilers were killed in the backcountry in avalanche slides. Only one was wearing a beacon.

Backcountry and Avalanche Safety resources, thankfully, are growing more plentiful and accessible, and last winter, we published an article on the basics. Earlier this winter, I spoke with backcountry athlete and web development colleague Dan Beerman, whose experience in the backcountry really broadened as a backpacking guide in New Mexico during the summers 12 years ago, followed by a position as a climbing instructor.

Dan Beerman on the Pacific Crest Trail

When I was a backpacking guide, I was on the search and rescue if I didn’t have a crew … We had a radio, so we were the point of contact for finding and doing extraction. That’s when I learned the most and was exposed to the most. I took my Wilderness First Responder course in 2014, and that was through the Wilderness Medical Institute.

Dan’s also a fellow hut tripper, and we’ve been talking about doing one together (when we’re on the other side of the current pandemic). He’s spent the last two New Year’s in huts, backcountry skiing or snowshoeing tours. This past year, he skied Buffalo Mountain’s Silver Couloir, in the Gore Range, and made an attempt at a couloir on Mt. Torrey’s. And there have got to be some good “couloir” puns out there.

Beerman on Buffalo, Summit County, CO.

I have aspirations to do the Colorado trail quickly, but I don’t know if I wanna do that in a competitive way or just recreationally backpack it. It’s hard to balance summer objectives, or climbing objectives vs. winter backcountry goals vs. alpine mountaineering objectives.

And he makes a great point:

In Colorado, your recreation is so close to becoming high-consequence all of the time! If the weather changes from the trailhead, that could be a really big problem.

I’m familiar. Nothing really teaches you as much or as quickly as getting caught in Colorado’s extreme weather patterns.

Avalanche Safety

Dan took an Avalanche Awareness and Safety class through Colorado Mountain School, held up in Rocky Mountain National Park over two field days after two nights of class in Boulder. His main takeaway:

Check an avalanche conditions snow report daily. Observing the snowpack over the season is going to make your confidence on the day of your excursion a lot higher. I’d had no context for why avalanches were happening, where and why it’s dangerous. Having that lens through which to view weather events in terms of avalanche conditions is so valuable. It’s an intuitive thing about paying attention to the weather.

This is my first season getting out at Copper, for example, and they all have that double-black diamond terrain in the back bowls that are labeled ‘EX’ on it. There’s a sign that says, ‘Ski with a partner,’ and I just thought, ‘Oh, shit, that sign should probably be much bigger!’

Beacon, shovel, probe are the mandatory avalanche terrain items — you’re putting other people at risk if you don’t have [them], because even if you observe a slide, you can’t do anything about it. Additionally, if you don’t have a beacon in a slide, others can’t find you. You’re not contributing to a rescue, nor can you be rescued. In Colorado, there’s an increasing awareness for that. I typically will bring that with me all the time, it’s just always in my ski bag. Having some snacks, having some water, those are the kinds of things: you should never not have them.

Beerman in his beacon.

Training

I’ll take the goals of the expedition and plan accordingly. If I’m doing a ski trip, I’ll wanna get out and do hikes with weight or runs where I’m doing elevation several times. I like to do six weeks out, of four weeks of training and two weeks of tapering down.

Nutrition

I tend to be in a constant attempt to gain weight. On the Pacific Crest Trail I tried to gain weight prior, eating a lot of fatty foods, that kind of thing. Jonathan and I came up with this metric: calorie-per-dollar-per-ounce. Lightweight food that’s affordable, easy to ingest, easy to prepare, and you aren’t having to burn a lot to carry that with you to the backcountry.

[On the trail], peanut butter is always a winner. Olive oil is one of the highest calorie-per-ounce [food]. I have literally drank it before, but just add it to everything. I do eat a lot of standard trailmix, it’s easy and accessible. I’m a big fan of pumpkin seed mix or stuff with chocolate in it. I like CLIF bars. I do not like Luna bars because I’ve eaten so many of them. I can’t eat pop tarts anymore because they used to be in the meals that were issued when I was a guide. Snickers bars are a great calorie-per-dollar-per-ounce deal. I eat a Snickers bar or two before bed when I’m sleeping at altitude so my body has calories to stay warm.

I’ll make these mass-gainer complex food supplements. It’s like protein powder, but it also has carbs, like a workout and performance powder. And I would add that to water with coffee, and that would be a breakfast while hiking. There’s a lot of different kinds of powders and mixes you can add, but when you’re in calorie-burning mode, I do recommend this. If you’re hiking 20+ miles in a day or 4000+ feet of elevation in a day, you’re burning greater than 4000 calories, so you really have to eat more than you think you can.

Acclimatization

I wouldn’t say that I had HAPE (high altitude pulmonary edema) or HACE (high altitude cerebral edema) … Definitely, especially when I was younger … I would travel from 4000′ to 10,000′ in a 24-hour period. I’ve actually had search and rescues where someone was having night-terrors or hallucinations [due to HAPE or HACE]. I was a backountry professional for the Boy Scouts at a camp at 10,800′ (one of the first backcountry camps, in New Mexico). I’ve experienced dizziness, nausea, insomnia, weakness of the knees, elevated heart rate … and I’m a runner, I’m in decent shape. But you should acclimatize before setting out on a trip.

Skiing down the Silver Couloir.

One last piece of advice,

Learn the Leave No Trace principles. We live in a state where impact is so concentrated that the more that everybody knows, the more likely it will be there for the next generation.

Dan and his backpacking, backcountry cohorts keep a blog full of breathtaking landscapes and telling captions on CaptainsofUs.com.

There will be plenty of time to escape to the backcountry again after the risks of COVID-19 have subsided. The current time is a good time to start preparing mentally. Know before you go.

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

COVID Vs. HAPE: Frontline Theories on Treatment

A good friend in Hawaii recently sent me a YouTube video referencing Dr. Cameron Kyle-Sidell, a critical care and emergency room physician at Maimonides Medical Center in NYC.  Dr. Kyle-Sidell was discussing his findings while working with COVID-19 patients in NYC and compared those findings to altitude sickness. I did a search and found he had posted several videos on social media comparing Acute Respiratory Distress Syndrome (ARDS) in COVID-19 patients to altitude sickness and reconsidering how these patients are treated. Altitude sickness is something I see and treat frequently here in Summit County. Based on the similarities between the two conditions, the same treatment for altitude sickness and high altitude pulmonary edema (HAPE)[1] may be beneficial to COVID-19 patients.

In an interview with Dr. John Whyte, Dr. Kyle-Sidell described the acute ARDS he is seeing in COVID-19 patients as atypical and not responsive to standard treatment, specifically in regards to ventilator use and settings. He describes some of his patients as alert, talking in full sentences, and not complaining of shortness of breath but have oxygen saturation levels in the 70s (John Whyte & Cameron Kyle-Sidell, 2020). Normally, that is not the case when a person has an O2 saturation[2] in the 70s and is in respiratory distress. However, this is not abnormal in patients with altitude sickness and HAPE. There are certain protocols in hospitals regarding when to intubate a person and to put them on a ventilator. According to Dr. Kyle-Sidell, these protocols apparently aren’t always helpful for COVID-19 patients with ARDS, and can at times be harmful.

The similarities between findings with COVID-19 and HAPE are remarkable. These similarities include: hypoxia (low oxygen levels), low CO2 (carbon dioxide) levels, tachypnea (rapid respiratory rate), patchy infiltrates seen on chest x-ray, bilateral ground glass appearing opacities on chest CT, fibrinogen levels/fibrin formation, aveolar compromise[3], decreased Pao2:FiO2 ratios[4], and ARDS in severe disease (Solaimanzadeh, 2020). Noting these similarities may be helpful when approaching treatments for COVID-19.  Acetazolamide (Diamox), Nifedipine (Procardia) and Phosphodiesterase inhibitors (Viagra, Cialis etc.) have been used in treating HAPE and could possibly be beneficial in treating COVID-19. For example, Acetazolamide potently decreases the constriction of small vessels in the lungs that contribute to fluid build up (edema) seen in both HAPE and COVID-19 patients (Solaimanzadeh, 2020).

In our house call practice, we treat quite a bit of altitude sickness due to our elevation here in Summit County. During the ski season, we may see 3-4 patients per month that develop HAPE. The majority of the time, these patients can be safely treated and monitored in their residence or hotel room. Treatment for both altitude sickness and HAPE consists of oxygen, usually 2-5 L/min via nasal cannula continuously while sleeping or resting. We also treat our patients with an injection of a steroid, Dexamethasone. We closely monitor them and may repeat the dose of Dexamethasone or prescribe an oral steroid. These patients usually see some improvement by the next day and significant improvement when they descend in altitude. I have read recommendations for and against steroid use with COVID-19.  More studies need to be done, which I will be following closely as future recommendations may change how I treat HAPE when there is also a suspicion of COVID-19.

The key to treatment is oxygen! We’ve seen patients with O2 saturation levels in the 40s and 50s and lungs that sound like a “washing machine”, as Dr. Gray, has described it (in a previous Doc Talk article). If we can get their oxygen saturation up into the mid 80s or 90s on 5L/min (of O2) or less via nasal cannula, typically, they can avoid an ambulance ride and emergency room visit. As Dr. Kyle-Sidell notes, many of the COVID-19 patients he sees are talking coherently and not in severe respiratory distress. A friend who is an EMT in New York described a man he recently transported to the hospital, in his 50’s, with presumed COVID-19. He had no respiratory distress, walking and talking coherently, no chronic medical problems but his oxygen saturation was in the 60s. He said they took him to the emergency room and he was intubated and placed on a ventilator. Apparently, this is a common occurrence from what he has seen. I am still amazed when a patient calls, gives me their address and directions to where they are staying and when I arrive, their oxygen levels are in the 40s. It is a very rare occurrence that I need to send a patient to the hospital, which they always appreciate. We monitor our patients very closely until their departure and have them call anytime, day or night, with any changes in condition.

Dr. David Gray, who started our business, has been treating these patients for over 18 years. He states that in a few of the HAPE patients that he has treated, including his own 13-year-old son, he has seen O2 saturations in the 30’s & 40’s. In these few patients, he was only able to get their O2 saturation up to high 60’s, low 70’s, on 5 liters. They were so much improved, clinically, that he accepted those levels. A large dose of Dexamethasone & 12 hours of rest, on nasal oxygen, resulted in marked improvement by the next day, every single time. His rule, as in patients with DKA, is “if the pathology didn’t happen rapidly, you don’t necessarily have to reverse it rapidly.”

Dr. Kyle-Sidell suggests not putting COVID-19 patients on ventilators based solely on numbers (John Whyte & Cameron Kyle-Sidell, 2020). Treating these patients with prone positioning, oxygen via nasal cannula, high flow on a non-rebreather mask or CPAP[5] along with careful monitoring and a little patience may be preferable to a ventilator (John Whyte et al, 2020). If a ventilator is needed, using less pressure to reduce lung damage and higher oxygen levels may prove to increase the likelihood of a better outcome (John Whyte et al, 2020). There is so much to learn about COVID-19 and how to treat it. Treating it as you would with HAPE is certainly something to consider. I appreciate providers who are sharing their personal experiences in treating these patients. As healthcare providers gain more experience treating this virus and share their experiences, protocols will change and I suspect ventilator use as well as the death rate will decrease.

[1] A complication of altitude sickness in where the lungs fill with fluid and small amounts of blood

[2] Blood oxygen level

[3] Damage to the tiny sacks in the lungs where gas exchange occurs

[4] partial pressure of arterial oxygen: percentage of inspired oxygen ratio used to determine ARDS and lung damage

[5] Continuous positive airway pressure

Danielle Shook MSN, NP-C is a board-certified Family Nurse Practitioner. She has been in nursing for over 27 years. She earned her Master’s Degree at University of Colorado, Colorado Springs through Beth El School of Nursing. Her nursing experience includes 10 years in Obstetrics and 7 years in Hospice home care. She has over 9 years experience as an NP which includes Family Practice at the Air Force Academy, Urgent Care, Acute and after hours care with the Army Premier Clinic as well as house calls.

References

John Whyte, Cameron Kyle-Sidell. Do COVID-19 Vent Protocols Need a Second Look? – Medscape – Apr 06, 2020.

Solaimanzadeh I (March 20, 2020) Acetazolamide, Nifedipine and Phosphodiesterase Inhibitors: Rationale for Their Utilization as Adjunctive Countermeasures in the Treatment of Coronavirus Disease 2019 (COVID-19). Cureus 12(3): e7343. doi:10.7759/cureus.7343


Aconcagua: an Athlete/Medical Scientist’s Narrative in Symptoms

“Day 10: I walked for maybe an hour up to Camp 3 (19,258’/5870 m) from Camp 2 (18,200’/5547 m). I became the slowest person. I had tunnel vision. It was bad. It took a lot of willpower. I do a good job of not telling people how bad I really feel. After about a mile, I told them I had to stop, and me and Logan turned around. We had that conversation,

‘I don’t think I should go up anymore. It’s not safe for me, and it’s not safe for the group.’

Barely able to move, about an hour above Camp 2.

“The others didn’t go all the way to Camp 3, but continue on a bit more. Angela said she got a headache really bad and couldn’t see out of her right eye. I had already pretty much decided — I was devastated — after two nights and two days of not acclimating. Alejo had a stethoscope and said my left lung was crackling. We thought I might develop some really serious pulmonary edema.”

Keshari Thakali, PhD is an Assistant Professor in the Department of Pediatrics at the University of Arkansas for Medical Sciences in Little Rock, AR. She is a cardiovascular pharmacologist by training and her research laboratory studies how maternal obesity during pregnancy programs cardiovascular disease in offspring. When not at work, you can find her mountain biking, rock climbing, hiking or paddling somewhere in The Natural State. She has a long-term career goal of merging her interests in mountaineering with studying cardiovascular adaptations at high altitude. She has climbed to some of the most extreme elevations in the Rocky Mountains, Andes and Himalayas. Last December, she flew down to Mendoza in Argentina for an ascent up Aconcagua.

Sacred in ancient and contemporary Incan culture, and the highest peak in the Americas, Aconcagua summits at 22,837′ (6960 m). Current statistics show only 30 – 40% of attempted climbs reach the top of this massive mountain in the Andes, in Principal Cordillera in the Mendoza Province of Argentina.

Sunset on Aconcagua from Base Camp.

The day following Keshari’s decision not to summit, she hiked back down to Plaza de Mulas (14,337’/4370 m) from Camp 2, carrying some of her colleague’s gear that he didn’t want to take up to the summit as he continued to ascend. Plaza de Mulas is a large base camp area with plenty of room for tents, available water, and large rocks that provide some protection from the wind as climbers take time to acclimate before continuing their ascent.

“Even though my oxygen [saturation] was low, I was functional. As you go down, everything gets better. The others continued up to Camp 3. They spent one night there, then summited the next day. It took them 12 hours.

“The day the others came back to Plaza de Mulas, I think that’s when everything hit me. I felt like a zombie. I did some bouldering and got so tired I had to sit down and catch my breath often, probably because I had been hypoxic and we were at over 14,000′.

“[The next day] we did the really long hike from Plaza de Mulas all the way to the entrance of the park. It probably took about 8 hours to walk all the way to the park entrance.

“We drove to Mendoza that night. I felt like my body was tired, but my muscles were functioning just fine. It’s hard to describe.”

They had done everything right and had taken every precaution. Each of Keshari’s colleagues boasted significant backgrounds in climbing and mountaineering, their cumulative accomplishments including Mt. Elbrus (18,510’/5642 m), Cotopaxi (19,347’/5897 m) and Denali (20,335’/6198 m), their ages 30 to 65. They weren’t initially planning to hire porters, “but they ended up carrying a lot of our stuff. In the end, it just makes sense to hire these porters to increase your chance of success.”

They gave themselves about two weeks to make the ascent and return. There was ample time for them to stop at each camp and spend time acclimatizing, including day hikes to the nearby peaks of Bonete and Mirador.

“Day 4 [we did an] acclimatization hike to Bonete (16,647’/5074 m), pretty much the same elevation of Camp 1. You look at the mountain and it looks pretty close, but … in mountaineering, you don’t do distances, you do time. Did the hike in mountaineering boots, which were heavy and clunky, but I learned how my boots actually work. You walk differently in these than a shoe with a flexible sole. The last part of the mountain is pretty rocky and it looks like you’re almost to the top, but you still have to walk an hour to the summit. It took about five hours to go up. We were walking slow, I felt fine. From the top of that mountain, looking away from Aconcagua, you can really see Chile and the Chilean Andes.”

Summit of Bonete.

All the way through their first week of climbing, including a day of resting and eating after their hike up Bonete, Keshari was feeling fine.

“Day 8, we made the push to Camp 2 (18,200’/5547 m). None of these hikes made me tired. I was plenty trained. We were carrying packs, but they were still pretty light, packed with stuff for the day. We spent the night at Camp 2, took oxygen mostly at night. [My] first reading at Camp 2 was low. We were at over 18,000′. I thought maybe I’ll just go to sleep and it’ll get better.

Looking down on Camp 2 covered in snow.

“Day 9 was a rest day at Camp 2 because the weather was really bad. All I did was sleep that day. If you’re gonna go to Camp 3, that means you’re gonna do a summit push the next day, because Camp 3 is so high. You’re just struggling to stay healthy. I felt really bad in the tent, but if I went outside to pee or walk around, I felt better. My pulse ox was still pretty low that day. That night, a snow storm blew in and it snowed a lot.” And it was the following day of their ascent to Camp 3 that Keshari made the decision not to summit.

Since returning from her expedition, she’s reflected on some other variables. “I swear I was hyponatremic (an abnormally low concentration of sodium in the blood). We went through four liters of water a day with no salt in the food. I was having these crazy cramps in my abs and my lats and places I don’t typically get them. To me, that has to do with electrolyte imbalance. Next time, I’m taking electrolyte tablets, not just stuff to mix in my water.

“I’m not very structured in my diet. In general I eat pretty clean, but I don’t count calories. I eat vegetables, but I also hate going grocery shopping. I feel like I eat a pretty balanced diet. If I buy meat, I’ll buy a pack of chicken and that’s my meat for a week or two.

“On the mountain, in general, I felt like they fed us way more fiber. In Argentina, they eat a lot of meat. They’re meat-eaters. They didn’t feed us steak on the mountain, but … at Base Camp, I felt like they were overfeeding us. We had pork chops one night, but on the mountain, I felt like it was mainly lentils and noodles. Even though you’re burning calories, how your body absorbs them is different. They really try to limit your salt intake because they’re concerned about having too high blood pressure. At Base Camp, breakfast was always scrambled eggs with bacon and toast. Lunch and dinner were always three course meals starting with a veggie broth soup. They fed us like kings … I brought Clif blocks with caffeine in them for hiking snacks, Lara bars.”

I ask about her main takeaway from it all:

“I think I need more time to acclimate. I don’t know how much more time, but maybe more time at about 16,000′. Maybe take Diamox. Someone suggested I should have been on an inhaled steroid, especially because my asthma is worse in the cold. If I were to go next time, I would want a couple more days at 15,000 – 16,000′. Maybe the Diamox is something I would need to use next time.

“The nerd in me wants to measure pulmonary wedge pressures (via very invasive catheters; you could go through the jugular), nothing practical,” she laughs. “The pulse oximeter is the easiest tool.”

One last thing she’d do differently? One of her colleagues bought a hypoxic generating system from Hypoxico, “which I think puts CO2 back into your system; sleeping high, training low. That might have been the best thing.”

Keshari went sky-diving back in Mendoza the day after returning from their descent. “I was expecting a lot of adrenaline jumping out of an airplane, but there was none. I enjoyed the freefall, but when the parachute went up, I got really nauseous. Maybe I had just been stressed for so long, there was no more adrenaline left. I was like, ‘Where’s the risk involved in this?'”

An illustrated oxy-journey.

Keshari also summited Cotopaxi earlier the same year. Read her own account here.

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

Oxygen

It has everything to do with how well the body functions at increasing elevation. In Summit County, Colorado, we live at an average elevation of 9000′ (2743 m). Most bodies start a significant physiological response to 8000′ (2438 m). Even healthy athletes experience shortness of breath during certain activities that wouldn’t be noticeable at lower elevations. The body compensates by circulating more oxygen-carrying red blood cells, because there isn’t as much oxygen packed into each breath you take. Heart rate increases, you take quicker breaths, speeding up your ventilation. You are hyperventilating. If you manage well enough for a couple weeks, your body will eventually start creating more red blood cells to circulate more oxygen throughout your body at all times. This process will peak at about three months.

We often get questions about the canisters of oxygen sold at convenience stores, souvenir shops and gas stations across Colorado and whether or not they make any difference. There is a 100% consensus among every physician, athlete, EMT and ski patroller we have ever interviewed that they do not.

Why not? Dr. Chris has been practicing medicine at 9000′ for 20 years in Frisco, CO, so I asked her a couple of the questions that have come up at our clinic and on our blog recently and frequently.

How much oxygen is needed to actually mitigate symptoms of altitude sickness?

For someone with low blood oxygen saturation, our target would be 90% . They should be put on a concentrator or a large tank [of oxygen]. The adult dose is 2 to 4 liters per minute, the pediatric dose can be between 1/4 L per minute and 1 L per minute, 24 hours a day, for up to a week, or until their oxygen saturation can maintain at 90%. Less than that, and usually, it will drop again after 10 minutes off oxygen; and it’ll often be lower when you sleep, too.

What if I bought ten of these canisters of oxygen available at the gas station and breathed all of them in, one after the other. Would that make a difference?

You might get three hours worth of oxygen if you bought ten of those store-bought cans, which might help an altitude sickness-induced headache. But again, your oxygen would likely drop shortly thereafter, and you would be experiencing the same symptoms.

What happens if someone struggling with acclimatization also contracts COVID-19 or another disease with associated respiratory complications?

We don’t know. Their oxygen requirement might be higher. All of us at altitude might be at greater risk than someone living at sea level.

When do you make the decision to send someone to a lower elevation? How low?

If they are having trouble breathing in spite of being on 4 L of oxygen per minute. If they need more than that, we would send them to a lower elevation. Most people are fine going to Denver. By Georgetown (8530’/2600 m, a town between Summit County and Denver), they’ll experience an improvement. It’s above 2500 m where altitude issues become problematic.

Research in recent years, including our own, is revealing many other different variables that may affect an individual’s ability to acclimatize to high elevations, including different hormones, genetics, and muscle mass. We continue to advise anyone traveling to the Colorado mountain region above 7000′ from lower elevations to stay hydrated and well-rested, and time a slow ascent, planning to spend at least 24 hours in Denver, or another comparable lower elevation, before arriving at your final destination.

robert-ebert-santos

Roberto Santos is from the remote island of Saipan, in the Commonwealth of the Northern Mariana Islands. He has since lived in Japan and the Hawaiian Islands, and has made Colorado his current home, where he is a web developer, musician, avid outdoorsman and prolific reader. When he is not developing applications and graphics, you can find him performing with the Denver Philharmonic Orchestra, snowboarding Vail or Keystone, soaking in hot springs, or reading non-fiction at a brewery.

COVID-19 at Altitude Update

This is a Corona virus update from Children’s Hospital of Colorado and Ebert Family Clinic as of March 27, 2020.

Dr. Chris attended the weekly Children’s Hospital providers update webinar last night.  The good news is that the number of admissions and outpatient visits for children with respiratory illness is down by 50% compared to this time in previous years.

Another hopeful report about COVID transmission is that only 10% of family members develop symptoms when someone in the household becomes ill.

Testing priority update:

  1. Hospitalized patients and health care workers with symptoms;
  2. People in long term care and/or over age 65 with underlying health conditions, first responders and those working with seniors AND symptoms;
  3. Others with milder symptoms.

Testing involves inserting a swab deep into the nasopharynx. This requires having the swabs, tubes, protective equipment for the care provider, test kits and coordinated delivery of the specimens. There are shortages in all these areas, along with the risk to the health care worker. Thus, in Colorado at Children’s Hospital and in Summit County there are very limited controlled locations where respiratory specimens are collected. Currently, this is at the Summit County Community Care Clinic at a station behind the medical office building.

Anyone needing a test or face-to-face exam for respiratory symptoms must call ahead to any of these locations providing care: 970-668-4040.

Both the American Academy of Pediatrics and the Center for Disease Control recommend we continue providing well child care to those under age 2 in order to maintain vaccination rates at a level that will reduce the risk of another outbreak, such as measles or pertussis. If the child or any family member has respiratory symptoms, the visit should be rescheduled.

Telehealth visits for everyone with mild or moderate respiratory illness are being offered at Ebert Family Clinic and most other facilities. Because the illness can rapidly worsen, even after five days, IT IS CRITICAL THAT YOU HAVE A PULSE OXIMETER TO MONITOR YOUR OXYGEN. Blood oxygen saturation level is a critical vital sign that greatly aids in medical assessment. You can obtain a pulse oximeter at any pharmacy or at Ebert Family Clinic: (970) 668-1616.

Most patients can be treated at home with oxygen if they have saturation readings in the 80’s or high 70’s, but a rapid increase in oxygen requirement, shortness of breath, and readings below 75% merit an evaluation in the Emergency Room. CALL BEFORE YOU GO! (970) 668-8123. 

Health care providers in the mountains can evaluate your breathing effort by phone and video, and order oxygen to be delivered to your home.

Ibuprofen is safe (barring allergy), and along with acetaminophen, are the only medications recommended to treat the fever and pain (headache, backache, earache) of COVID-19, according to the infectious disease experts at Children’s Hospital. Other medications mentioned in the news are experimental, used on very ill patients in the hospital, and could possibly make an individual’s condition worse.

COVID-19 at Altitude

I am here at the Ebert Family Clinic waiting for the Public Health nurse to arrive for our staff training. Our plan is to set up an outdoor facility to screen individuals for COVID-19, Influenza, Strep, and Respiratory Syncytial Virus, when symptoms indicate to do so. The guidelines are ever-changing, but we are staying updated on the daily, even hourly changes. We are following guidelines published March 15:

  1. If you have mild respiratory symptoms – stay home!
  2. If you have a fever over 100.4° with respiratory symptoms (cough), but no shortness of breath or trouble breathing – stay home! Testing for COVID-19 is reserved for health care workers or senior services at this moment.
  3. If you have a fever, respiratory symptoms and trouble breathing – call the Emergency Room to set up a time to be screened and examined. If symptoms are severe – call 911.

EVERYONE AT ALTITUDE MUST HAVE ACCESS TO A PULSE OXIMETER!

Pulse oximeters are available at pharmacies and most stores. If you are unable to find one, please let us know. Your oxygen saturation is the key to assessing the severity of your illness.

Respiratory infections (such as influenza or COVID-19) puts high altitude residents at higher risk for pulmonary edema. Symptoms of pulmonary edema are cough, shortness of breath, and an oxygen saturation below 89%.  Supplemental oxygen is the treatment, but it must be ordered by a physician.

Resources such as laboratory testing, x-rays, antibiotics and inhalers may be limited during this pandemic.  As a physician, I use clinical judgement when sending patients for additional testing and treatment. I will take extra caution when sending stable patients to the hospital if they can be treated without an x-ray or lab test, or when no treatment is available. I am conservative in prescribing inhalers to people without a clear indication in order to conserve these for patients with definite reactive airways disease that respond to these treatments (i.e. asthma). These individuals should make sure that they have their medications on hand.

Viral pneumonia and pulmonary edema look the same on an x-ray, and clinical standards of care do not require an x-ray for diagnosis. The health care provider will prescribe antibiotics based on clinical suspicion and risk factors since chest x-rays do not always indicate whether someone has pneumonia.

Eagle County has 50 confirmed cases, so far, and several who were severely ill had to be transferred to Denver. As Governor Polis stated, the small mountain hospitals will be quickly overwhelmed as cases increase. There will also be a time when the hospitals in Denver are full and cannot accept transfers.

Ebert Family Clinic will continue seeing patients for preventive care. Wellness visits are scheduled in the morning and sick visits in the afternoon. Patients are not left to mingle in the waiting room as they are taken immediately back into a room. If they wish, they may also stay in their car or outside until we are ready for them to be roomed. Specific rooms are reserved for well visits. Deep cleaning and sanitization is performed after all visits and at the end of the day.  We ask that you also take preventative measures, like covering your cough, staying at home, and washing your hands.

Dr. Christine Ebert-Santos and an MA assess a patient and test a sample for COVID-19 in the parking lot in front of Ebert Family Clinic, Frisco, CO.

Influenza vaccines are important and available. There are cases of combined COVID-19 and Influenza, both of which attack the respiratory system, which is serious. Other vaccines that also prevent respiratory illnesses, such as pneumococcal, pertussis and HIB, can be LIFE-SAVING! These important vaccinations are administered at 2 months, 4 months, 6 months, and 1 year of age. Adults over 50 should receive the pneumococcal and flu vaccines. Children under 18 years have not had severe cases of COVID-19, but they are very contagious, even when they have no symptoms.

If you or your child are otherwise well and do not need vaccines, it is reasonable to postpone contact with the medical system and to reschedule routine checkups.

Dr. Chris is always available on her cell outside clinic hours for advice and treatment to continue her epic and ongoing efforts to keep patients healthy and out of the emergency room.

Please monitor our Facebook site for updates from our viewpoint.  Read our blog for a wealth of information on living in a low-oxygen environment, including interviews with local physicians practicing here for 20-30 years.