An enlarged image of red blood cells

RED FLAGS AT ALTITUDE: When Your Doctor Tells You Your Labs AreNormal But the Results in the Patient Portal Are Flagged

It comes as no surprise that living at altitude can take some adjustment. Travelers visiting just for a quick ski trip recognize  immediately, sometimes even at Denver International Airport when first arriving at Colorado’s Mile High City at 5280 feet, that the air is “thinner” than where they might have journeyed from. That thinner air we all feel is due to our altitude living at 9,075 feet (2) here in Frisco, CO. Our bodies can feel the atmospheric changes even if we do not recognize them ourselves. As a point of reference, on the rather extreme side, the “death zone” that comes to mind when thinking of the behemoth Mount Everest, is any elevation of 26,247 feet and above (3), a  zone we might not be as familiar with is the deterioration zone which begins at a mere 15,000 feet (3). In this zone, the symptoms are variable, but  common manifestations are lethargy, weight loss, poor appetite, and irritability (4). Altitude experts identify 8,000 feet as the elevation where  symptoms such as headaches and pulmonary edema are more likely to manifest. The good and bad effects of altitude are proportional to the elevation and variable between individuals. For all of you ‘fourteener’ fanatics out there, including myself, this comes as a reminder that we are closer than we think to detrimental elevation in our atmosphere. With this  frame of reference fresh in our minds, let us take a closer look at how living in at the elevation of Frisco, Colorado at 9000 feet or the neighboring towns can affect our health. 

Mountain residents who have blood tests done commonly see “red flags” next to some lab values. In particular, the complete blood count, commonly referred to as CBC. To most of us, those red flags are an alarming indicator that something must be terribly awry but au contraire,  there is an explanation why we need not worry. For those of us living at altitude, there is a reduced atmospheric pressure, so although the fraction of oxygen in the air is still 21%, the molecules are further apart. Fewer oxygen molecules enter our lungs and bloodstream  delivering less oxygen to our tissues(5). Remember now, we are not living on top of Mount Everest, so we are not in any danger, because our bodies are doing behind-the-scenes work for us! Our bodies are adapting by increasing the amount of red blood cells, which carry oxygen in our blood, throughout our bodies so that every organ is being supplied with the good stuff! This is exactly why athletes come here to train, to get their bodies to produce more red blood cells so they can perform at their absolute best. After three months of life in the mountains, nearly everyone has elevated red blood cells, hemoglobin, hematocrit, and red cell indices such as the MCV, (mean corpuscular volume), MCHC (mean corpuscular hemoglobin content) and MCH (mean corpuscular hemoglobin). A “normal” hemoglobin in a man who lived for years in the mountains was a signal to his doctor that the patient was anemic and in fact turned out to have colon cancer.

A more immediate response to the low oxygen environment at altitude is an increase in respiratory rate. In an interview with physician experts on altitude Dr. Elizabeth Winfield and Dr. Erik Swenson on May 30, 2023, both think this is the reason there is often a red flag for the carbon dioxide (CO2) as low, usually 17 to 19 with 20 being normal.  Because this affects the acid base balance, the serum chloride ( Cl) may be slightly elevated, 107 to 108 instead of 106. Dr. Winfield also explains to her patients that fasting for labs may cause mild dehydration leading to a slightly higher BUN, blood urea nitrogen, a marker of kidney function.  Another physiological response to altitude is a lower plasma volume, which may cause slight elevation in the serum protein and albumin.

So when you doctor calls you and tells you your labs are normal, ask them to drill down and explain the red flags.  If you find out something new, please put a comment on our blog and share with the world! Few health care providers really understand all the changes in the human body living in hypobaric hypoxic (low pressure, low oxygen) environments.

References 

1. Image. https://ichef.bbci.co.uk/news/624/cpsprodpb/960F/production/_83851483_c0249925-red_blood_cells,_illustration-spl.jpg

2. Town of Frisco Colorado. (2023). Maps. https://www.friscogov.com/your-government/maps/

3. Lankford, H. V. (2021). The death zone: Lessons from history. Wilderness & Environmental Medicine, 32(1), pp. 114-120. https://doi.org/10.1016/j.wem.2020.09.002

4. West, J. C. (2013). Case law update. Legal liability in emergency medicine and risk management considerations. Journal of healthcare risk management: the journal of the American Society for Healthcare Risk Management, 33(1), pp. 53-60. 

5. Cabrales, P., Govender, K. and Williams, A.T. (2020), What determines blood viscosity at the highest city in the world?. J Physiol, 598: 3817-3818. https://doi.org/10.1113/JP280206

6. Image. https://cdn.allsummitcounty.com/images/content/5717_13913_Frisco_Colorado_Main_Street_lg.jpg

Leave a Reply

Your email address will not be published. Required fields are marked *


This site uses Akismet to reduce spam. Learn how your comment data is processed.