Are Epigenetics the Bridge to Permanent Physiologic Adaptations in Organisms Living at High Altitude?

The CDC defines epigenetics as “the study of how your behaviors and environment can cause changes that affect the way your genes work… epigenetic changes are reversible and do not change your DNA sequence, but they can change how your body reads a sequence.”1 Examples of epigenetic changes include methylation, histone modifications, and non-coding RNAs. Researchers have postulated the involvement of epigenetics in an organism’s adaptations to hypoxic high-altitude environments. After looking into this topic, I questioned if epigenetics may be the bridge to the permanent physiologic alterations in organisms living at high altitudes. 

Hypoxia Inducible Factor-1 (HIF-1) is a nuclear transcription factor activated in hypoxia states, and regulates several oxygen-related genes. The role of epigenetics, specifically methylation of HIF-1 in the expression of the erythropoietin gene, in states of hypoxia was researched. Erythropoietin was chosen due to it being a widely known protein that stimulates erythropoiesis in states of hypoxia. It was confirmed that HIF-1 binds to a HIF-1 binding site (HBS) on the erythropoietin enhancer and will induce transcription of erythropoietin.2 CpG methylation in the HBS interferes with HIF-1 binding, thus inhibiting the activation of transcription of erythropoietin.2  They also found that there were several other oxygen-related genes that were susceptible to similar epigenetic changes.2 Another study investigating HIF-1 and its binding to HIF-1 response element (HRE) upstream to a target gene confirmed the potential for epigenetic changes, specifically methylation. They found that this HIF-1 binding site has a CpG dinucleotide, making it inherently susceptible to methylation.To clarify, the most notable epigenetic change is the methylation of cytosine located 5’ to guanine, known as CpG dinucleotides.Again, they reported that methylation of the CpG island in the HIF-1 binding site upstream of the target gene, erythropoietin, was negatively correlated with its expression.

Furthermore, research on epigenetic changes in rats exposed to long and short-term intermittent hypoxic environments and their room air recovery treatments suggests there is a long-term effect in rats exposed to long-term intermittent hypoxia.4  Rats were exposed to short-term (10 days) and long-term (30 days) intermittent hypoxia resembling obstructive sleep apnea oxygen profiles.The short-term hypoxic rats treated for 10 days at room air reversed their altered carotid body reflexes including hypertension, irregular breathing, and increased sympathetic tone. While the long-term hypoxia rats treated for 30 days at room air did not have a reversal of altered carotid body reflexes.There were similar results in reactive oxygen species (ROS) and antioxidant enzyme (AOE) levels. The long-term hypoxia rats had increased levels of ROS and decreased AOEs in their recovery periods compared to the short-term hypoxia rats.

Erythropoietin is not the only oxygen-related gene that is affected. For example, a study looked at the methylation profiles of Tibetan and Yorkshire pigs under high-altitude hypoxia. IGF1R and AKT3 were two notable differentially methylated genes found to have high expression and low methylation levels in Tibetan pigs that suggest a role in adaptation to hypoxic environments.Both genes are responsible for cell proliferation and survival.Tibetan pigs are known to have become physiologically adapted to their high-altitude hypoxic environment over generations and epigenetic changes were verified in the genome-wide sequence ran in this study.5 This study alludes that epigenetics is not only a bridge but may be a part of the permanent physiologically selected adaptations to ensure survival at high altitudes.

In conclusion, research demonstrates a variety of epigenetic changes that are taking place in these high-altitude hypoxic environments. The research suggests that they may likely be tissue-specific as well. There are definite knowledge gaps in the exact roles that epigenetics may play in hypoxic environments and gene expression. There is room for more research and identifying alterations to epigenetics to improve human physiologic adaptations to hypoxia. 

References 

1. Centers for Disease Control and Prevention. What is Epigenetics. https://www.cdc.gov/genomics/disease/epigenetics.htm. Accessed December 30th, 2022.

2. Wenger, R.H., Kvietikova, I., Rolfs, A., Camenisch, G. and Gassmann, M. (1998), Oxygen-regulated erythropoietin gene expression is dependent on a CpG methylation-free hypoxia-inducible factor-1 DNA-binding site. European Journal of Biochemistry, 253: 771-777. https://doi.org/10.1046/j.1432-1327.1998.2530771.x

3. Yin H, Blanchard KL. DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms [published correction appears in Blood 2000 Feb 15;95(4):1137]. Blood. 2000;95(1):111-119.

4. Nanduri J, Semenza GL, Prabhakar NR. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol. 2017;313(6):L1096-L1100. doi:10.1152/ajplung.00325.2017

5. Zhang B, Ban D, Gou X, et al. Genome-wide DNA methylation profiles in Tibetan and Yorkshire pigs under high-altitude hypoxia. J Anim Sci Biotechnol. 2019;10:25. Published 2019 Feb 5. doi:10.1186/s40104-019-0316-y

A woman in a white coat with long, dark, straight hair below her shoulders smiles.

Emily Paz is a third-year medical student at Rocky Vista University College of Osteopathic Medicine and is looking forward to pursuing a career in orthopedics. She is from the central coast of California and earned her Bachelor of Science degree in General Biology from the University of California San Diego. She worked in an emergency department as an EMT after her undergraduate education which reaffirmed her passion and curiosity for medicine. In her free time, she enjoys snowboarding, practicing Muay Thai, cooking, and spending time with family and friends.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.