RSV: The Higher the Altitude, the Higher the Risk

Respiratory syncytial virus, RSV, is a common disease that predominantly affects infants and children throughout the world. Symptoms include mild fever, runny nose, coughing, and wheezing (CDC, 2021 and is the leading cause of bronchiolitis and pneumonia in children under the age of 1 in the United States. Because of this high risk of lower respiratory symptoms RSV is also the leading cause of hospitalizations within this age group (Sanofi Pasteur, 2021). Testing for RSV is quick and easy. Children under the age of 5 can be tested for RSV with a nasal swab and rRT-PCR test, similar to COVID-19 home tests (CDC, 2021) available at clinics and emergency rooms. . Unfortunately, preventing the spread of RSV and keeping these hospitalization rates to a minimum is more difficult at higher elevations.

One of our patients during admission after being diagnosed with RSV earlier in the day.

Higher elevations affect the body in many ways. The human body physiologically adapts within seconds of exposure to higher altitudes. Respiratory rate increases in order to compensate for the lower amount of oxygen circulating within the body (Scott, 2018). Within days to weeks, the body begins to acclimate to the higher altitude and this hypoxic state by maintaining this increased ventilation rate and increasing the amount of hemoglobin in the body (Scott, 2018). Due to the combination of effects on ventilation and oxygenation, managing respiratory infections like RSV becomes more difficult.

  The correlation between rates of RSV and higher altitudes has been studied more in recent years. It is hypothesized that the physiological changes that the body undergoes at higher altitude predisposes children to respiratory illnesses including RSV (Shi et al., 2015). In one study done in Colorado, the incidence of RSV within the population was higher than those at moderate and lower elevation areas. The rates of hospitalization increased 25% with children under the age of 1 and up to 53% with children between 1 and 4 (Choudhuri et al, 2006). Data shows that as altitude increases, the incidence of RSV increases, with elevations over 2500m considered as a modest predictor of RSV-related hospitalizations. The incidence of morbidity associated with RSV increases with higher elevation as well (Wu et al., 2015). This increased morbidity is attributed to the thick secretions that is caused by the virus. Since infants breathe through their nose until age 3, this collection of mucus causes respiratory issues including pauses in breathing with cyanosis called apnea. With studies showing the increased incidence, hospitalizations, and morbidity of RSV at higher altitudes, diagnoses of RSV should not be downplayed in children living at high altitudes.

Photo of the same patient as above on home oxygen after being discharged from the hospital.

It is important for providers and parents to be aware of the higher risk for more severe disease progression faced by children who reside at higher altitudes. Parents should recognize the symptoms of RSV and practice proper handwashing techniques to prevent the further spread of this disease within the community. Health care providers within these high-altitude areas should consider additional interventions and treatments such as home oxygen or nasal suctioning which may be beneficial to preventing hospitalizations due to RSV. Dr. Chris advises parents with older children in daycare or preschool to consider keeping them home during RSV season (November-April) when they have a new baby in the house. Although it is imperative to properly diagnose and treat RSV to avoid hospitalizations, obtaining a chest x-ray and treating with medications like albuterol or steroids is unnecessary. Ultimately, although RSV is a benign disease to most, in areas of higher elevation, it must be taken seriously order to prevent unfavorable outcomes.

References

Centers for Disease Control and Prevention. (2021, September 24). Symptoms and care of RSV (respiratory syncytial virus). Centers for Disease Control and Prevention. Retrieved April 28, 2022, from https://www.cdc.gov/rsv/about/symptoms.html 

Choudhuri, J. A., Ogden, L. G., Ruttenber, A. J., Thomas, D. S., Todd, J. K., & Simoes, E. A. (2006). Effect of altitude on hospitalizations for respiratory syncytial virus infection. Pediatrics, 117(2), 349–356. https://doi.org/10.1542/peds.2004-2795

Sanofi Pasteur. (2021). Rethink RSV. Retrieved April 28, 2022, from https://www.rethinkrsv.com/

Scott, B. (2018, June 13). How does altitude affect the body? Murdoch University. Retrieved April 28, 2022, from https://www.murdoch.edu.au/news/articles/opinion-how-does-altitude-affect-the-body#:~:text=Many%20people%20who%20ascend%20to,lethargy%2C%20dizziness%20and%20disturbed%20sleep 

 Shi, T., Balsells, E., Wastnedge, E., Singleton, R., Rasmussen, Z. A., Zar, H. J., Rath, B. A., Madhi, S. A., Campbell, S., Vaccari, L. C., Bulkow, L. R., Thomas, E. D., Barnett, W., Hoppe, C., Campbell, H., & Nair, H. (2015). Risk factors for respiratory syncytial virus associated with acute lower respiratory infection in children under five years: Systematic review and meta-analysis. Journal of iglobal health, 5(2), 020416. https://doi.org/10.7189/jogh.05.020416

Wu, A., Budge, P. J., Williams, J., Griffin, M. R., Edwards, K. M., Johnson, M., Zhu, Y., Hartinger, S., Verastegui, H., Gil, A. I., Lanata, C. F., & Grijalva, C. G. (2015). Incidence and Risk Factors for Respiratory Syncytial Virus and Human Metapneumovirus Infections among Children in the Remote Highlands of Peru. PloS one, 10(6), e0130233. https://doi.org/10.1371/journal.pone.0130233

Claire Marasigan is a 2nd year PA student currently studying at Midwestern University in Glendale, Arizona. Claire has lived her entire life in Arizona and went to Grand Canyon University for her undergraduate degree in Biology. Prior to PA school, she was a medical scribe trainer at St. Joseph’s Hospital in Phoenix. In her free time, she loves to cook, try new restaurants with friends, and play with her dog, Koji.