A scree field of large grey-brown rocks in the foreground with a view of the slopes of a mountain descending into a green valley with a river winding through its center.

The Nobel Prize: Hypoxia studies Won in 2019!

The Nobel prizes are announced this month. Alfred Nobel invented dynamite in 1866. Within 30 years, Nobel made a large fortune from his invention. He demonstrated his passion for literature and science by creating a yearly prize to discoveries most beneficial to humankind. The five prize categories include physics, chemistry, medicine (physiology), literature and peace. The Nobel prize nominations are made by university professors, national assemblies, state governments, and international courts. The prize is awarded yearly to individuals who have discovered a new paradigm or a paradigm shift within their field. The prize recipients are declared on the first Monday of October of every year and the award is presented by the Nobel assembly on November 10th, the anniversary of Alfred Nobel’s death. The Nobel prize consists of a gold medal, a diploma of recognition of achievement, and a cash prize in the amount of $1 million U.S. dollars. 

There is no limit to the number of nominations that can be made or the number of times that an individual can be nominated. There were 400 candidates nominated in the field of medicine in 2019, all of which inspired, challenged, and demonstrated greatness in their field. In 2019 the Nobel Prize in Medicine honored three scientists for their discovery of the human body’s ability to adapt to low oxygen environments. 

Hypoxia is a state of which oxygen supply is insufficient for normal life functions, experienced by the human body at high altitude. Tissues and cells require a range of oxygen in order to survive. Oxygen is required by mitochondria, in all cells, to convert food into useable energy. “Otto Warburg, the recipient of the 1931 Nobel Prize in Physiology or Medicine, revealed that this conversion is an enzymatic process.” At low oxygen environments, as experienced at high altitude, the body must adapt in order to maintain basic cellular function. There are several mechanisms in the human body that increase oxygen concentration including breathing rate, regulated by the carotid body, increased heart rate, stimulated by the vagus nerve, and increased production of red blood cells (RBCs)  through the bone marrow, regulated by the kidney. 

The carotid body is a chemoreceptor near the carotid artery that detects oxygen, carbon dioxide and pH levels in the blood. At low oxygen, the carotid body relays an afferent (ingoing) signal to the the brain via the glossopharyngeal nerve. The medullary center in the brain then sends an efferent (outgoing) signal that increases the respiratory rate to maximize oxygen delivery to the brain. The carotid sinus is a baroreceptor near the aorta of the heart which senses changes in pressure. As pressure increases in the atmosphere, experienced at high altitude, the carotid sinus sends a signal along the vagus nerve to the brain which then increases the heart rate. “The 1938 Nobel Prize in Physiology or Medicine was awarded to Corneille Heymans for discoveries showing how blood oxygen sensing via the carotid body controls our respiratory rate by communicating directly with the brain.”

At low oxygen environments, the kidney increases production of erythropoietin, which stimulates RBC generation in the bone marrow,  called erythropoiesis, resulting in higher oxygen delivery to the brain and skeletal muscles needed at high altitude. Erythropoiesis was discovered in the early 20th century, however oxygen’s role in the process was not completely understood. The cell’s ability to sense and adapt to oxygen availability was discovered and explained by three scientists, William G. Kaelin Jr., Sir Peter J. Ratcliffe and Gregg L. Semenza. 

2019 Nobel Prize, Physiology: 

Thanks to the work of Dr. Gregg L. Semenza and Sir Peter J. Ratcliffe, we now understand that the oxygen sensing mechanism that stimulates erythropoieten is present in all tissues, not just the kidney. Semenza conducted research on liver cells using gene-modified mice and found that a specific protein binds to an individual gene (the EPO gene), dependent upon oxygen availability. Semenza named the binding protein the Hypoxia-Inducible-Factor (HIF). The HIF protein was found to compose two transcription factors, HIF-1alpha and ARNT. In 1995, Semenza published his findings of the HIF protein. His work explained that when the body is at high oxygen environments, there is very little HIF-1alpha present within cells. At high oxygen availability, HIF-1alpha is rapidly degraded by a proteasome within cells. The degradation is signaled by a protein called ubiquitin which binds to HIF-1alpha at high oxygen, flagging HIF-1alpha for degradation by the proteasome. This process was recognized by the 2004 Nobel Prize in Chemistry, Aaron Ciechanover, Avram Hershko and Irwin Rose. 

The mechanism by which ubiquitin binds, causing the degradation of HIF-1alpha at high oxygen environments was explained by the work of William Kaelin, Jr. who conducted research on von Hippel-Lidau’s (VHL) disease. The VHL gene mutation causes an increased risk of cancer. Kaelin showed that the VHL gene encodes a protein that prevents the onset of cancer and was involved in controlling responses to hypoxia. VHL is part of a complex that labels proteins with ubiquitin. Ratcliffe discovered the physical interaction of the VHL gene with HIF-1alpha, causing degradation of the HIF-1alpha at normal oxygen levels. 

At hypoxic environments, HIF-1α is protected from degradation and accumulates in the nucleus, where it associates with ARNT and binds to specific DNA sequences (HRE) in hypoxia-regulated genes (1). At normal oxygen levels, HIF-1α is rapidly degraded by the proteasome (2). Oxygen regulates the degradation process by the addition of hydroxyl groups (OH) to HIF-1α (3). The VHL protein can then recognize and form a complex with HIF-1α leading to its degradation in an oxygen-dependent manner (4). 


At hypoxic environments, HIF-1α is protected from degradation and accumulates in the nucleus, where it associates with ARNT and binds to specific DNA sequences (HRE) in hypoxia-regulated genes (1). At normal oxygen levels, HIF-1α is rapidly degraded by the proteasome (2). Oxygen regulates the degradation process by the addition of hydroxyl groups (OH) to HIF-1α (3). The VHL protein can then recognize and form a complex with HIF-1α leading to its degradation in an oxygen-dependent manner (4).

Kaelin and Ratcliffe’s research identified how oxygen levels regulate the interaction between VHL and HIF-1alpha. Their work demonstrated that at normal oxygen levels, hydroxyl groups are added to specific positions within HIF-1alpha, causing modification of the protein and allowing VHL to recognize and bind to HIF-1alpha, leading to degradation of the protein complex.  At high altitude, cells produce a greater amount of the HIF-1alpha protein which binds to the EPO gene, up-regulating the production of erythropoietin hormone, stimulating RBC production. Together, Semenza, Kaelin, and Ratcliffe explained the oxygen sensing mechanism.

Leave a Reply

Your email address will not be published. Required fields are marked *


This site uses Akismet to reduce spam. Learn how your comment data is processed.