A tall conifer dusted in snow stands on a snow-covered hillside below the trunks of other conifers above it.

Effects and management of altitude on pre-existing cardiac conditions

As someone with family history of cardiac illness and a personal history of both supraventricular tachycardia (SVT) and high blood pressure, I have always tried to manage my modifiable risk factors through a healthy diet and exercise. Over the past year or two, most of my exercise has been in the form of running, since it is more conducive to the schedule of a physician assistant student during COVID restrictions. However, in the past I have been a regular rock climber and soccer player. Through my own personal experience I have noticed that when I stick to a healthy diet, not giving in to my sweet tooth, and keeping up with regular exercise that my episodes of SVT are less frequent. However, recently I traveled up from Denver, Colorado for a rotation at the Ebert Family Clinic in the mountain town of Frisco, and in the first two days at high elevation experienced an episode of SVT for the first time in nearly 6 months.

In my first day at over 9000 feet, I experienced a slight headache after a full day seeing patients, but did not think much of it or even consider it to be a side effect of the altitude. I spent my first day at altitude without exercising but I decided that on day two I had acclimated enough to go for a short run. Midway into my run, and shorter of breath than I expected, I experienced an episode of SVT that lasted for about 2-3 minutes and forced me to sit for several more minutes to catch my breath. Catching my breath afterward took slightly longer compared to my normal episodes, which made sense to me given the reduced availability of oxygen, but it did lead me to wonder if the altitude was a contributing factor to precipitating an episode of SVT after several months without one.

About one year ago, High Altitude Health interviewed Dr. Peter Lemis, a cardiologist in Summit County, Colorado about his thoughts and findings practicing cardiology at elevation. The discussion included questions about arrhythmias at altitude and Dr. Lemis stated that “studies have shown that cardiac arrhythmias are increased initially, but people become acclimated after about 3-5 days and the risk returns to baseline”. However, Dr. Lemis also states that the studies may not have been conducted for a sufficient length of time due to his personal experience of seeing a great deal of both atrial fibrillation and atrial flutter in his own practice. He states that the hypoxia leads to an increase in arrhythmias, but that for atrial arrhythmias, patients may experience relief from them when placed on nocturnal oxygen. Dr. Lemis also notes that “many people have central apnea during sleep at altitude due to the brain’s blunted response to high CO2 and low O2”, which can be a risk factor for the development of heart problems. The use of Diamox can be helpful in acclimating to altitude due to making “your blood a little acidotic which increases your respiratory drive” and the use of nocturnal oxygen can also help with acclimatization to altitude.

In March of 2021, the journal of Frontiers in Medicine published an article titled Nocturnal Heart Rate and Cardiac Repolarization in Lowlanders with Chronic Obstructive Pulmonary Disease at High Altitude: Data from a Randomized, Placebo-Controlled Trial of Nocturnal Oxygen Therapy by Maya Bisang, Tsogyal Latshang, Sayaka Aeschbacher, et al. This study compared COPD patients at altitude with and without oxygen therapy at night and COPD patients not at altitude without oxygen looking at QT interval, heart rate, and SpO2. The results of the study found that without oxygen use at altitude patients experienced an increase in heart rate, a lengthened QT interval, and naturally, a lower SpO2 at night compared to those at altitude who utilized oxygen and those that were not at elevation. This study was observing patients that had COPD. The results could potentially be relevant to younger patients without COPD, like myself, but would need further research.

I also looked into information regarding high blood pressure at altitude and found some helpful information from the Institute for Altitude Medicine. They state that for patients visiting altitude with a history of hypertension (HTN), even if it is well controlled on pharmacotherapy, may still experience a temporary increase in blood pressure at altitude. “One explanation for this is due to the higher levels of adrenaline or stress hormones in your body due to lower oxygen levels,” as they describe. Their research has also found that increases in blood pressure at altitude generally return to base line after 1-2 weeks. In order to help manage HTN at altitude they recommend ensuring that blood pressure is well controlled at sea level, reducing salt from the diet, remaining on any medications for HTN, checking blood pressure at altitude, and observing for symptoms of HTN that would need medical care such as headache, dizziness, chest pain, or shortness of breath.

Through my research regarding effects of altitude and the possible role of them in my recent episode of SVT, I have found that altitude can have several different impacts on cardiac function that definitely could have played a role in triggering an episode. Coming to altitude, I likely had an increase in blood pressure to compensate for the reduced availability of oxygen that increased strain on my cardiac muscle. I may have had EKG changes overnight related to decreased responsiveness of my central nervous system to CO2 levels. I also had an increased risk of arrhythmia based on coming to elevation. It is possible that any or all of these effects could have contributed or triggered my episode of SVT. Thankfully, after almost a month of staying at altitude I have adjusted more and have not experienced another episode. I have continued to exercise after a short break to allow more time to acclimate, but I have not pushed myself as hard.

I have learned that no matter how healthy you are or what your risk factors are, there are important steps to stay healthy when coming to altitude. If possible, at least one day at an intermediate altitude can help your body begin to adjust to the change. Drinking plenty of water to stay hydrated and avoiding alcohol can lead to a more comfortable stay and more rapid acclimatization. Meeting with a healthcare provider could also allow you to start a prophylactic course of Diamox or supplemental oxygen use. Utilizing a personal pulse oximeter allows you to monitor your SpO2 level and determine if nocturnal supplemental oxygen could be useful as well. If you have risks for cardiac conditions or already have a diagnosis of heart disease, these recommendations are even more important to prevent poor outcomes including myocardial infarctions due to reduced oxygen availability. Finally, it is important to remember that traveling to altitude is not a benign choice and a discussion with your healthcare provider is important to be sure that your personal risks are appropriately managed so that you can enjoy your trip to high elevation.

Justin Frazier is currently in his second year of PA school at Red Rocks Community College in Arvada, CO, a member of the class of 2021 graduating in November. He attended Appalachian State University in Boone, NC for his undergraduate degree majoring in Cell and Molecular Biology with a double minor in Chemistry and Medical Humanities. During his undergraduate he worked for two and a half years as a CNA at a local nursing and rehabilitation facility. After completing his undergraduate degree he started working as an EMT for almost a year before transitioning to work in a family medicine office where he worked as a Medical Assistant until starting PA school. He enjoys working in a primary care setting where he can help to keep people healthy throughout their lives and wants to pursue a career in pediatrics after graduating this year. He enjoys hiking, camping, rock climbing, and spending time with his wife and young son.

Leave a Reply

Your email address will not be published. Required fields are marked *


This site uses Akismet to reduce spam. Learn how your comment data is processed.