It’s Flu Shot Season!

It’s flu shot season!

Ebert Family Clinic now has flu shots available for both kids and adults!  As we move into cold and flu season, there are several things for mountain residents to remember about the flu.  First, the flu and the common cold are two separate illnesses that are prevented and treated differently.  The common cold is generally a mild and self limiting viral infection, caused by one of more than 200 types of virus from the rhinovirus family (6).   Because of the vast number of virus responsible for the common cold, there is no vaccine.  While the flu may also be self limiting in some cases, it carries higher risk of severe complications than dose the common cold and is thus monitored by both the Centers for Disease Control and the World Health Organization (5).  Additionally, the flu is cased by a smaller family of viruses, influenza A and influenza B (5).   Many symptoms between the flu and the common cold overlap, often causing confusion in when to seek treatment and come see Dr. Chris.  Although both pathogens share these symptoms, fever is generally higher in influenza infections, as is severe headache, body aches, cough and even vomiting in children (2).  The only way to know for sure is by testing for flu using a rapid flu swab that can be done in the clinic.  If your flu swab is positive for influenza, antiviral medications can be used to reduce the chances of severe complications, such as oseltamivir, or Tamiflu (2).

Unfortunately, mountain residents are at a higher risk of complication from influenza infections.  Data gathered from across Mexico during the 2009 H1N1 influenza pandemic showed that rates of hospitalization and death from influenza in patients living above 1,765 meters was three times that of patient living under that altitude (7).  Frisco, CO sits at 2,766 meters above sea level.  While many remember the 2009 flu year as one of the worst in recent history with 384 pediatric flu deaths in the US, it should also be noted that last year, 101 children in the US died from influenza complications.  About 85% of those children had not been vaccinated against influenza (5).  One way influenza viruses can lead to death is by breaking down epithelia cells found along our airways and even causing macrophages and neutrophils, two type of white blood cells to malfunction.  These attacks on the immune system then allow the infected victim to be susceptible to bacterial infections, such as pneumonia (4).   Viral infections such as influenza increase the risk of a high altitude pulmonary edema (HAPE) (3).  Children ages 6 months to age four are at an even higher risk of these devastating complications of an influenza infection (4).

Receiving the flu vaccine each year is an easy way to prevent severe flu infections in your self and your loved ones.  The flu vaccine is no longer available in the nasal mist, thus an injection is necessary.  Additionally, people who were once unable to get the flu shot because of egg allergies can now get the flu shot, but will need to be monitored for reactions for 30 minutes after receiving the vaccine (1).  All preparations of the flu vaccine are either inactivated influenza virus or recombinant influenza virus (or parts of the DNA from the virus).  Neither of these preparations involve live influenza virus and they cannot cause an influenza infection.

For more information or to make an appointment to receive your flu shot, please call the Ebert Family Clinic at 970-668-1616

Erica Fitzgerald, MSN FNP student

References:

  1. Centers for Disease Control and Prevention. (2016). Vaccination Who should do it, who should not and who should take precautions. Retrieved from : https://www.cdc.gov/flu/protect/whoshouldvax.htm#flu-shot
  2. Decker, B & Herring, M. (2011). Influenza vs the common cold: Symptoms and treatment.  Pharmacy Times, 77(11): 80.  Retrieved from: http://go.galegroup.com.libproxy.uccs.edu/ps/i.do?p=AONE&u=colosprings&id=GALE|A305993419&v=2.1&it=r&sid=summon&authCount=1
  3. Hevroni, A., Goldman, A., & Kerem, E. (2015). High altitude: Physiology and pathophysiology in adults and children: A review.  Clinical Pulmonary Medicine, 22(3): 105-113.  DOI: 10.1097/CPM.0000000000000093
  4. Martin-Loeches, I., Van Someren Greve, F., & Schultz, M. J. (2017). Bacterial pneumonia as an influenza complication.  Current Opinion in Infectious Disease, 30(2): 201-207.  doi1097/QCO.0000000000000347
  5. Munoz, F. M. (2017). Seasonal influenza in children: Clinical features and diagnosis.  In G. B. Mallory & M. S. Edwards (Eds.) UpToDate Database.  Retrieved from: https://www.uptodate.com/contents/the-common-cold-in-children-management-and-prevention?source=search_result&search=cold&selectedTitle=2~150
  6. Pappas, D. E. (2017). The common cold in children: Management and Prevention.  In M. S. Edwards & M. M. Torchia (Eds.) UpToDate Database.  Retrieved from: https://www.uptodate.com/contents/the-common-cold-in-children-management-and-prevention?source=search_result&search=cold&selectedTitle=2~150
  7. Perez-Padilla, R., Garcia-Sancho, C., Fernandez, R., Franco-Marina, F., Lopez-Gatell, H., & Bojorquez, L. (2013). The impact of altitude on hospitalization and hospital mortality from pandemic 2009 influenza a (H1N1) virus pneumonia in Mexico.  Salud publica de Mexico, 55(11): 92-95.  doi: 1590/S0036-36342013000100013

 

Asthma and High Altitude: What You Need to Know

 

According to the Centers for Disease Control and Prevention: one in thirteen people suffer from
asthma—that’s 25 million people in the United States alone, seven million of which are children under the age of
eighteen. 1 With populations in high elevation towns growing each year, more individuals with asthma will be adjusting
to life “up in the clouds.” While asthma sufferers may be at increased risk of developing a high-altitude illness such as
high altitude pulmonary edema (HAPE), is it possible for them to experience any benefits living at or traveling to
higher elevation? Before we dig in, let us examine what Asthma is and its related symptoms.

Asthma is an obstructive lung disease, meaning airflow is limited due to airway narrowing brought on by
inflammation and bronchial hyperactivity. The vast majority of patients with asthma will develop symptoms of
coughing, wheezing, chest tightness, and difficulty breathing before the age of five. When these symptoms present
intermittently, they can be controlled by a short-acting bronchodilator like Albuterol. For those with more persistent
asthma, an inhaled corticosteroid and (or) a long-acting bronchodilator may be needed in addition to
Albuterol. Exercise, cold weather, upper respiratory illness, stress, air pollution, and dust mite allergens are all known
triggers of an acute asthma attack. Is it possible that high altitude can actually minimize the impact of any of these
triggers?

One of the benefits of living at high altitude is consistently breathing the clean alpine air. Significantly lower
levels of house dust mites and air pollutants are found at high elevations; great news for allergic asthma
sufferers. 2  However, if one does not fall into that category, do not worry! A study published in the European
Respiratory Journal in 2012 showed that high altitude has beneficial effects for all asthma-types, especially those
refractory to steroids. Participants in the study had improved asthma control, improved lung function, and fewer sino-
nasal symptoms after 12 weeks at an altitude of 1,600 meters. 3 Given that even those with nonallergic asthma
benefited from high altitude treatment, there has to be something other than low levels of allergens at play. Several
studies have reported increased levels of catecholamines and cortisol in the bloodstream within the first two weeks of
staying at high altitude. 4 These hormones contribute to decreasing both bronchial inflammation and bronchial
reactivity which helps in controlling asthma symptoms. Furthermore, the lower viscosity of the air and lower oxygen
pressure reduce the resistance of airflow with inspiration and expiration, making it easier to breath! 2 Mountain living
may also yield a less stressful lifestyle. 3 Lower stress equals lower levels of the stress hormones that typically elicit an
inflammatory response, thus keeping asthma symptoms in check.

So, who is at risk when climbing to higher elevations? Anyone with asthma that is not well controlled prior to
to traveling to elevations of 1,500 meters and above could be at greater risk for having an asthma exacerbation when
they arrive. 2 However, little research has been done to determine who is more susceptible to Acute Mountain
Sickness (AMS) or more perilous altitude illnesses like HAPE. A group of researchers studying the effects of high
altitude and cold air exposure on airway inflammation in patients with asthma did incidentally find that patients with
lower oxygen saturation levels during a hypoxic exercise test were more likely to suffer from AMS when climbing to
high altitude. 4

What have we learned? HIGH altitude equals a LOW trigger environment for asthma patients. That means
it’s time to take that desired mountain vacation or tell your loved ones that suffer from asthma to finally come visit you
in the mountains! Keep in mind, the cold, dry air often accompanied by high elevations can incite an inflammatory
response, in turn, worsening asthma symptoms for some. We recommend visiting in the summer months. This
adverse reaction to cold air can be thwarted by using a face mask or other protective gear that not only warms but
also humidifies inspired air. 5

Disclaimer: If you or a loved one with asthma plan on traveling to high altitude be sure to check in with your primary
care provider first. If your asthma is not well controlled you may want to avoid any travel as it could increase your risk
of an attack.  Be prepared! Always carry your rescue inhaler and if you plan on going up in elevation be extra
cautious and bring inhaled or oral steroids as well. 

Laura Greenberg, PAS-II
Midwestern University Physician Assistant Program
Clinical Rotation—September 2017

Resources

  1. Centers for Disease Control. Asthma. http://www.cdc.gov/asthma/default.htm. (retrieved September 24, 2017)
  2. Mendenhall, A.M. & Forest, C.P. (2017). Out of air: Is going to high altitude safe for your patient. JAAPA, 30(8), 10-15.
  3. Rijssenbeek-Nouwens, L.H., Fieten, K.B., Bron, A.O., Hashimoto, S., Bel, E.H., and Weersink, E.J. (2012). High-altitude treatment in atopic and nonatopic patients with severe asthma. Eur Respir J. 40(6): 1374-1380
  4. Seys, S.F., Daenen, M., Dilissen, E., Thienen, R.V., Bullens, D.M.V., Hespel, P., Dupont, L.J. (2013). Effects of high altitude and cold air exposure on airway inflammation in patients with asthma. Thorax BMJ. 68: 906-913
  5. Cogo, A., Fiorenzano, G. (2009). Bronchial Asthma: Advice for Patients Traveling to High Altitude. High Alt Med & Biol. 10(2): 117-121
  6. Vinnikov, D., Khafagy, A., Blanc, P.D., Brimkulov, N., Steinmaus, C. (2016). High-altitude alpine therapy and lung function in asthma: systematic review and meta-analysis. ERJ open research, DOI: 10.1183/23120541.00097-2015.
  7. Grissom, C.K., Jones, B.E. (2017). Respiratory Health Benefits and Risks of Living at Moderate Altitude. High Alt Med & Biol. 00(00): 1-7

Children’s Ears and Changes in Altitude Changes

Children’s Ears and Changes in Altitude Changes

The middle ear is where problems originate during changes in altitude like flying in a plane or driving over mountain passes. The middle ear contains Eustachian tubes that open and expand/contract to accommodate for changing air pressures in the environment. Adults have the knowledge and ability to actively “pop” our ears with intention so the pressure doesn’t become too high. Children that are too young to understand this process are at a higher risk for developing problems related to pressure related changes in the middle ear. So if you have descended on a plane or over a mountain pass and your child has been screaming the whole time…this is probably why!!! Their Eustachian tubes are also narrower and shorter than adults putting them at higher risk for problems equalizing pressure changes. Descending is usually when the most intense pressure changes occur but it can become a concern at any point in a trip.

Things you can do to help your baby/children:

  1. Encouraging them to swallow (this will help the Eustachian tubes to expand)
  2. Giving them a pacifier (in babies and much younger children this sucking can mimic swallowing and help to expand the Eustachian tubes)
  3. Give them a bottle (this is even more effective than a pacifier at opening the Eustachian tubes)
  4. If they are old enough to chew gum this can be very helpful!
  5. If they are old enough to follow directions but don’t have the natural instinct to pop their ears then have them pinch their nostrils closed, fill their cheeks with air, and blow out with the mouth closed directing the air toward the ears. This may have to be repeated several times to achieve effect. (These directions seem to help with understanding the technique)
  6. NEVER EVER LET YOUR BABY SLEEP DURING THE DESCENT. Allowing the pressure to build up without relieving it for an entire descent can put your child at risk for an ear drum rupture, especially if they have been congested or have a cold already. You should keep your baby awake for any descent and follow the above advice for pacifier or bottle feeding during this time.
  7. Decongestants are okay to pre-medicate adults for altitude changes but not the best option for very young children or babies. If you are planning on traveling with a congested or sick baby and have concerns about altitude pressure changes in the plane or mountains, speak with your healthcare provider before administering any medications.
  8. If your baby or child remains fussy, irritable, congested, feverish, or is pulling at their ears they should see a healthcare provider to assess if there is an ear infection (this may be related or unrelated to the altitude changes)

American Academy of Otolargyngology. (2017). Ears and altitude. Retrieved from: http://www.entnet.org/content/ears-and-altitude

Tara Goetz RN, BSN, CEN, CCRN

tara.goetz@ucdenver.edu